
Confirmatory factor
analysis (CFA)
presentation

Learn what CFA is and how to run the analysis in R
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1 Confirmatory factor analysis
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1.1 Definition
CFA is a model-data fit test based on multivariate regression. Outputs are coefficients of
paths and fit indices.

If the paths are significant and indices indicate acceptable or high degree of fit, that
means the structural model is confirmed by data.

Practical note: it is not good practice to use a CFA to confirm the findings of an EFA. It is
better to use an EFA to help determine the number of factors, but then to collect more
data to test one or more competing models based on that general factorization.

Concrete research applications in CFA

Is the assumed factor structure confirmed?

Does my theoretically specified measurement model match my data?

Is there a good fit between the theoretical model and the empirical model?

What is the quality of “competing” measurement models?

Etc…
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1.2 Latent constructs
Latent constructs are not “directly” measurable (e.g. media
usage motives, media or brand ratings, attitudes, emotions
and empathy in the media reception, trust, etc.).

Problems:

definitions can be understood differently

terms can be completely unknown

some concepts have several dimensions/facets

Therefore, we should ensure several “indicator variables” that
allow conclusions to be drawn about the latent variable.
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1.3 Reminder: fundamental theorem
Like the EFA, the CFA is also based on the fundamental theorem of factor analysis:

 = value of person i on observed variable j

 = factor loading (correlation of a variable j and factor 1)

 = factor value of person i on factor 1

It is about a comparison (or an adjustment) between:

empirically found correlations between indicators and

theoretically assumed correlations between factors and items

= + +. . . +xij aj1fj1 aj2fj2 ajnfjn

xij

aj1

fi1
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1.4 Requirements
Mathematical requirements:

There are several interval-scaled variables, each of which is (roughly) normally
distributed.

Variables that should theoretically load on a factor should correlate empirically (if not,
they are probably not determined by the same factor)

Sufficient directly measured variables must be available to test the assumed model
structure (see model identification)

Theoretical assumptions:

Theoretical (or “logical”) justification for the expected model structure made up of
items and factors

Theoretical/latent construct: describe exactly which aspects a theoretical term
contains.

Items for the latent constructs: developed items to depict the theoretical constructs.
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2 Model structure
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2.1 Model parameters and model identification
Problem: question of whether a system of equations can be solved mathematically, which
means that the model parameters (free parameters) must be estimated from the empirical
variances and covariances of the manifest variables.

Logic: all parameters should be estimated in the model (factor loadings, error terms and,
if applicable, permitted correlations between latent variables) must be calculable with the
help of empirical parameters.

Identification: if all parameters are to be estimated in the model, then the model is
identified. If this is not the case, there is (so to speak) an equation with too many
unknowns. Such an equation is “unsolvable”, or such a model is “unidentified”.
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2.2 Diagram
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2.3 Types of parameters
Fixed: are assigned a specific constant value a priori.

value equals zero: if no causal relationships between certain variables is
(theoretically) assumed

value greater than zero: can be specified, for instance, if the exact effect between
two variables is already known in advance

Constrained: should be estimated in the model, (value should correspond exactly to
the value of one or more other parameters).

If the influence of two variables on a dependent variable is considered to be equal.

If two parameters are defined as restricted, only one parameter has to be estimated
instead of two.

Free: all other parameters whose values are considered unknown and should be
estimated from the empirical data.

12

Multivariate statistics



3 Model information
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3.1 Identification
Step 1: defining a metric for the latent constructs

The latent variables and error variables to be estimated initially have no metric.

In order to interpret the variable, a scale must be assigned.

Step 2: identifying the model structure

A metric for the latent constructs must be defined.

Check whether there is enough information to estimate the model.

Note: the more complex a model is, the more parameters have to be estimated, and the
greater the model’s degrees of freedom must be in order to make the estimation possible.
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3.2 Quantity of information
If  manifest variables are collected, then the empirical variances and covariances of
these variables can be calculated:

 corresponds to the available “information” for calculating all free parameters of our
model. The difference between the available empirical information ( ) and the number of
parameters to be estimated ( ) gives the degrees of freedom of the model ( ):

Under- and over-identified models:

if : the number of model degrees of freedom corresponds to zero (just-identified).

if : the model is not identified (under-identified).

n

p =
n(n + 1)

2

p

p

q dfM

d = p − qfM

p = q

q > p
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3.3 Identification methods
Reference Variable (or Marker Method):

A reference (or marker) variable is chosen, and its factor loading on the latent
variable is fixed to 1. This approach requires selecting the best indicator variable to
represent the latent construct.

By fixing this loading to 1, the latent variable is defined in the same metric as the
chosen indicator, meaning that the latent variable mirrors the chosen indicator variable
except for measurement error.

Fixed Factor Loading (or Variance Standardization Method):

The variance of the latent variable is fixed (often to 1), and the factor loadings for all
measured indicator variables are freely estimated.

The estimated measurement errors, therefore, reflect any observed variance that is not
attributable to the influence of the latent variable.
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3.4 Example: under-identified model
In the following example, the model is under-identified (df < 0): the information available
from the empirical data is not sufficient to calculate the parameters.

5 total (unique) parameters

quantity of information to estimate: 

4 free parameters

degree of freedom:  (under-identified)

p = = 3
n(n+1)

2

p − q = 3 − 4 = −1
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3.5 Example: over-identified model
In the model below:

11 total (unique) parameters

quantity of information to estimate: 

9 (11-2) free parameters

degrees of freedom:  (over-identified)

p = = 10
4(4+1)

2

p − q = 10 − 9 = 1
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4 Model quality
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4.1 Parameters determination and Fit-indices
Empirical variance-covariance matrix (in short: covariance matrix): calculated with the
collected data (= empirical relationships in the data).

Model-theoretical covariance matrix: defined measurement model (= expected
relationships in the data).

=> the model-theoretical covariance matrix should resemble the empirical covariance
matrix as closely as possible.

Model quality: fit-indices describe how good the model is. Exactly one solution is possible
for exactly identified models, several solutions are possible for over-identified models, the
best solution must be found.
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4.2 Maximum Likelihood and model quality
The parameters can actually be estimated using various functions. The most common
method is the so-called Maximum Likelihood (ML) method. The estimated parameter is
selected that is most likely to reproduce the observed data.

Once a solution has been found, it must be checked for quality.

Reliability: Repeated measurements must always produce the same result (items must
all show a high loading with the latent construct)

Validity: the measuring instrument should measure what it is supposed to measure

Multi-stage process:

Checking at indicator level

Testing at the construct level

Examination on model level
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4.3 Indicator level examination
We must ensure that only “good” indicators are included in a model:

sufficiently high correlations between the items (e.g. Cronbach’s Alpha)

plausibility of the factor loadings

significance/strength of the factor loadings

Standardized solution corresponds to factor loadings (as in EFA, values >.5 are
desirable)

Squared factor loadings indicate the percent variance of a variable that is explained
by the factor behind it (should reach at least .3)

24

Multivariate statistics



4.4 Construct level examination
We should assess whether the constructs/factors are reliably
and validly measured:

Factor reliability (should be > .5)

Average extracted variance of factors (should be > .5)

Discriminant validity (Fornell/Larcker criterion)

25

Multivariate statistics



4.5 Model level examination
The examination at model level suggests to check whether the
empirical variance-covariance matrix is reproduced as well as
possible by the model-theoretical variance-covariance matrix
(e.g. Fit-indices, Chi-Square test statistic, RMSEA and SRMR).

Chi-Square Test (H0: empirical covariance matrix = model-
theoretical covariance matrix)

The smaller the difference between the two matrices, the
smaller the chi-square value (the smaller the chi-square,
the better).
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4.6 Guidelines: fit assessement
Table can be found .here
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4.7 In case of bad model fit
There are several things we can do if the model fit is too bad:

adjust model if necessary

release certain fixed parameters

find a balance between mathematical fit and theoretical meaning

Comparing different models can be useful when we have competing theoretical models.

Comparison rules:

lower RMSEA = descriptively better model

larger CFI = descriptively better model

smaller AIC = descriptively better model
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5 Example in R
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5.1 Example: negative campaigning behavior
scale
We can use CFA to check a theoretical model for measuring negative campaigning
behaviors of politicians using the following variables:

Criticised particular items on the platform of other parties

Criticised the records of other parties during the term

Criticised issues specific to the personal campaign of other candidates

Criticised personal characteristics and circumstances of other candidates

library(foreign)1
db <- read.spss(file=paste0(getwd(),2
                "/data/1186_Selects2019_CandidateSurvey_Data_v1.1.0.sav"), 3
                use.value.labels = T, 4
                to.data.frame = T)5
sel <- db |>6
  dplyr::select("B9a","B9b","B9c","B9d") |>7
  stats::na.omit()8
for(i in 1:ncol(sel))9
{10
  sel[,i] <- as.numeric(sel[,i])-111
}12
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5.2 Testing the model
# default: marker method by lavaan1
syntx <- 'RC1 =~ B9a + B9b + B9c + B9d'2
model_cfa <- lavaan::cfa(syntx, data = sel)3
summary(model_cfa)4

Length  Class   Mode 
     1 lavaan     S4 

coef <- lavaan::parameterestimates(model_cfa)1
data.frame(coef[,c("lhs","op","rhs","est","pvalue")])2

  lhs op rhs       est pvalue
1 RC1 =~ B9a 1.0000000     NA
2 RC1 =~ B9b 1.0751968      0
3 RC1 =~ B9c 1.0159835      0
4 RC1 =~ B9d 0.7518455      0
5 B9a ~~ B9a 0.8377181      0
6 B9b ~~ B9b 0.8805613      0
7 B9c ~~ B9c 0.4378973      0
8 B9d ~~ B9d 0.5384798      0
9 RC1 ~~ RC1 0.7003171      0
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5.3 Visualization
semPlot::semPaths(model_cfa, what = "est", rotation = 2, 1
                  style = "lisrel", font = 2)  2
title("Row Estimations")3
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5.4 Model fit
fits <- lavaan::fitMeasures(model_cfa)1
data.frame(fits = round(fits[c("ntotal","df",2
                               "chisq","pvalue",3
                               "rmsea","rmsea.pvalue","srmr")], 2))4

                fits
ntotal       2074.00
df              2.00
chisq         300.49
pvalue          0.00
rmsea           0.27
rmsea.pvalue    0.00
srmr            0.06
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