
Exploratory factor
analysis (EFA)
presentation

Learn what EFA is and how to run the analysis in R
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1 Exploratory versus confirmatory
factor analysis

3

Multivariate statistics



1.1 Conceptual difference
EFA:

In EFA, all measured variables are related to every latent variable.

It is used to reduce data to a smaller set of summary variables and to explore the
underlying theoretical structure of the phenomena.

It asks what factors are given in observed data and, thereby, requires interpretation of
usefulness of a model.

CFA:

In CFA, researchers can specify the number of factors required in the data and which
measured variable is related to which latent variable.

It asks how well a proposed model fits a given data.

It is useful to compare models (and data).
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1.2 Differences in both approaches
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2 How EFA works
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2.1 Prerequisites for dimensionality reduction
There are two main prerequisites:

Condition: There are several interval-scaled characteristics (items).

Rule of thumb: At least 50 people and 3x more people as variables (ideally: 5x more
people as variables!).

Dimensionality reduction transforms a data set from a high-dimensional space into a low-
dimensional space.

It can be a good choice when you suspect there are too many variables which can be a
problem because it is difficult to understand (or visualize) data in higher dimensions.
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2.2 Potential consequence of having a
multitude of predictors

Possible harm to a model: in linear regression, the number
of predictors should be less than the number of data points
used to fit the model.

Multicollinearity: between-predictor correlations can
negatively impact the mathematical operations used to
estimate a model.

Theoretical violations: predictors may be measuring the
same latent effect(s), and thus such predictors will be highly
correlated.
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2.3 Dimensionality reduction methods
There are different ways of combining variables:

linear: Principal component analysis (PCA), Factor analysis
(FA), Multiple correspondence analysis (MCA), Linear
discriminant analysis (LDA) or Singular value decomposition
(SVD)

non-linear: Kernel PCA, t-distributed Stochastic Neighbor
Embedding (t-SNE) or Multidimensional scaling (MDS)

Alternatively, we can keep the most important features:
Random forests, Forward or Backward selection, among
others.

10

Multivariate statistics



2.4 EFA: general procedure and guidelines
Procedure:

Setup and evaluate data set

Choose number of factors to extract

Extract (and rotate) factors

Evaluate what you have and possibly repeat 2 & 3

Interpret and write-up results

Guidelines:

It is better to select only the variables of interest from the data set.

As factor analysis (and PCA) does not play well with missing data, it is better to remove
cases that have missing data.

Remember that factor analysis is designed for continuous data, although it is possible
to include categorical data in a factor analysis.
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2.5 Suitability of the data
Only relevant items may be included in the factor analysis. For instance, items must
correlate significantly.

Here, Bartlett Test is useful to assess the hypothesis that the sample came from a
population in which the variables are uncorrelated:

H0: The variables are uncorrelated in the population.

H1: The variables are correlated in the population.

Kaiser-Meyer-Olkin (KMO) criterion and Measure of Sampling Adequacy (MSA) further
test to what extent the variance of one variable is explained by the other variables. This
indicates whether a data set is suitable for a factor analysis:

value range 0-1

values from .8 desirable

values below .5 unacceptable
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3 What factors are
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3.1 Spatial representation
In EFA, each variable cannot be fully explained by a linear combination of p factors:

This approach should be used when trying to identify latent variables that are crucial to
answering the items.

The correlation coefficient between item and factor is the factor loading ( ).

Fundamental theorem: every observed value of a variable  can be described as a linear
combination of several (hypothetical) factors ( ).

= + +. . .+ +Zij fi1a1j fi2a2j fipapj ej

ajn

xj

fjn
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3.2 Coefficient of determination
To extract the factors, we can z-standardize all variables
(mean=0, standard deviation=1).

To measure the explanation of the variance of a variable, the
coefficient of determination represents the square of the factor
loading (see  in the linear regression).

The first factor is the z-standardized variable for which the sum
of the determination coefficients is maximum.

R2
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3.3 Strategies to extract the relevant number
of factors

Kaiser criterion: significant factor explains more variance
than any of the original variables and this criterion is fulfilled
from an eigenvalue of 1 onwards

Scree plot: eigenvalues are plotted in the graphic and the
factors that lie above a “threshold” are extracted

Content plausibility: so many factors are accepted that a
plausible interpretation results

A priori criterion: it is theoretically determined in advance
how many factors there should be
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4 Factor rotation
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4.1 Types of rotation
By rotation one obtains simple
structure, the factor interpretation
is relieved.

There are different types of
rotation:

Orthogonal: the factor axes
remain at right angles, so that
they are uncorrelated

Oblique: the factor axes do not
remain at right angles, so that
they are correlated

Combination (first right angles
and then oblique)

20

Multivariate statistics



4.2 Which rotation is better?
Which form of factor rotation is chosen in a specific case often depends on the theory
behind it.

Orthogonal rotations:

are easier to interpret because the factors are uncorrelated.

are usually appropriate for pure dimension reduction.

Oblique rotations:

appear to make more sense if highly correlated factors are assumed in the data.

do not assume that the various factors are independent and, therefore, uncorrelated.

Practical guideline: start with the assumption that the factors are non-independent
(oblique rotation method). If the correlations are fairly low (r<|0.30|), then you could
justify the assumption that the factors are independent (orthogonal) and should not be
correlated.
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4.3 Rotation options
Oblique rotation options:

Promax rotation is popular for its ability to handle large datasets efficiently. The
approach also tends to result in greater correlation values between factors.

Oblimin rotation is somewhat less efficient with large datasets, but can produce a
simpler factor structure.

Orthogonal rotation options:

Varimax rotation is optimized to reduce cross loadings and to minimize smaller loading
values, making factor models clearer.

Quartimax rotation works to reduce the number of variables needed to explain a factor,
making interpretation easier.

Equamax rotation offers a compromise between varimax and quartimax.
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5 Interpreting and naming the factors
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5.1 Factor loadings
Factor interpretation is based on the factor loadings. Loadings from .5 are usually
interpreted. Ideally, variables load exactly high on one factor and low on another.

For factor naming, variables with higher loadings should be given more consideration.

A negative charge does not mean that the item does not belong to the factor. However,
the sign must be taken into account in the interpretation.

Possible problems:

Loading several variables on several factors poses interpretation difficulties

Negative factor, or one-item factor
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5.2 Validation & crossloadings
Validation and internal validity:

You need to assess whether all variables load onto the factors sufficiently. If not: try
another method of factor extraction and/or a different number of factors.

It is also important to check that all factors have at least 3 or more variables loading
onto them. If not: decrease the number of factors.

Values of Cronbach’s alpha will look a lot like positive correlation values, varying
between zero and 1.0. If you see values greater than 1.0, you may have some collinearity
issue.

Crossloadings:

Crossloadings (variables that load onto more than one factor) should be unavoidable.

Each factor should be interpretable: variables that load onto each factor have at least a
fairly clear theme (based on the variable definitions).
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6 Quiz
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6.1 Can I answer these questions?

true false Statements
   The KMO (Kaiser-Meyer-Olkin criterion) describes the

proportion of the variance of an item that is explained by all
factors

 

   The KMO indicates whether the data are suitable for factor
analysis

 

   In EFA, each item can initially be fully explained by a linear
combination of all factors

 

   For factor analyses, the sample size should be at least N=20  

Score: 0

True or false?
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7 Example in R
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7.1 Data selection
In the following example, we will look for the best categorization of political candidates’
campaign tools (e.g., door-knocking, mailing lists, Facebook posts, etc). This could then
lead to create scores for the each of the candidates’ communication patterns.

We first select the necessary variables and make sure that they are in a numeric format.
library(foreign)1
db <- read.spss(file=paste0(getwd(),2
                "/data/1186_Selects2019_CandidateSurvey_Data_v1.1.0.sav"), 3
                use.value.labels = T, 4
                to.data.frame = T)5
sel <- db |>6
  dplyr::select("B4a","B4b","B4c","B4d","B4e","B4f","B4g","B4h","B4i","B4j",7
                "B4k","B4l","B4m","B4n","B4o","B4p") |>8
  stats::na.omit() 9
for(i in 1:ncol(sel)){sel[,i] <- as.numeric(sel[,i])-1}10
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7.2 Correlation analysis
If some variables are too highly correlated (r>0.90), then it is better to select one variable
from each pair to omit from the data set:

M <- cor(sel)1
round(M, 1)2

    B4a B4b B4c B4d B4e B4f B4g B4h B4i B4j B4k B4l B4m B4n B4o B4p
B4a 1.0 0.4 0.3 0.2 0.2 0.2 0.2 0.1 0.2 0.3 0.2 0.1 0.2 0.1 0.0 0.2
B4b 0.4 1.0 0.2 0.1 0.3 0.2 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.0 0.1
B4c 0.3 0.2 1.0 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.0 0.1
B4d 0.2 0.1 0.1 1.0 0.3 0.3 0.3 0.2 0.3 0.2 0.3 0.2 0.2 0.1 0.1 0.1
B4e 0.2 0.3 0.2 0.3 1.0 0.3 0.3 0.1 0.2 0.2 0.2 0.1 0.2 0.2 0.1 0.1
B4f 0.2 0.2 0.1 0.3 0.3 1.0 0.5 0.1 0.3 0.3 0.3 0.2 0.3 0.1 0.2 0.2
B4g 0.2 0.2 0.2 0.3 0.3 0.5 1.0 0.1 0.3 0.3 0.3 0.1 0.3 0.1 0.1 0.2
B4h 0.1 0.1 0.1 0.2 0.1 0.1 0.1 1.0 0.2 0.2 0.3 0.4 0.1 0.3 0.1 0.1
B4i 0.2 0.1 0.1 0.3 0.2 0.3 0.3 0.2 1.0 0.4 0.4 0.2 0.2 0.1 0.2 0.2
B4j 0.3 0.2 0.1 0.2 0.2 0.3 0.3 0.2 0.4 1.0 0.3 0.2 0.3 0.2 0.1 0.2
B4k 0.2 0.1 0.1 0.3 0.2 0.3 0.3 0.3 0.4 0.3 1.0 0.3 0.3 0.1 0.2 0.3
B4l 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.4 0.2 0.2 0.3 1.0 0.1 0.2 0.2 0.2
B4m 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.1 0.2 0.3 0.3 0.1 1.0 0.3 0.2 0.3
B4n 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.3 0.1 0.2 0.1 0.2 0.3 1.0 0.1 0.1
B4o 0.0 0.0 0.0 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.2 0.2 0.2 0.1 1.0 0.2
B4p 0.2 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.2 0.2 0.3 0.2 0.3 0.1 0.2 1.0
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7.3 KMO test and Bartlett’s test for sphericity
We can also run the KMO test which serves as a criterion overall and for each variable in a
correlation matrix. The following values are generally acceptable: >0.7

The null hypothesis for Bartlett’s test is that the correlation matrix equals the identity
matrix (rule out that the variables in the data set are essentially uncorrelated). If you fail
to reject the null for this test, it suggests that there is nothing in there for you to factor (the
variables are all essentially different from one another).

psych::KMO(sel)1

Kaiser-Meyer-Olkin factor adequacy
Call: psych::KMO(r = sel)
Overall MSA =  0.85
MSA for each item = 
 B4a  B4b  B4c  B4d  B4e  B4f  B4g  B4h  B4i  B4j  B4k  B4l  B4m  B4n  B4o  B4p 
0.83 0.76 0.86 0.88 0.84 0.86 0.86 0.77 0.87 0.87 0.87 0.81 0.87 0.76 0.89 0.87 

bartlett = psych::cortest.bartlett(sel)1
print(paste0("Chi-2: ", round(bartlett[["chisq"]],2), 2
             "; p-value: ", bartlett[["p.value"]]))3

[1] "Chi-2: 5346.19; p-value: 0"
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7.4 Latent structure & Eigenvalue
We are seeking latent structure within a set of data, and we will only be interested in
factors that explain a substantial proportion of variation within the data.

The eigenvalue method (Kaiser’s rule) is telling us that 4 factors may be best.

The scree plot is putting us somewhere between 2 and 4 factors:

ev <- eigen(cor(sel)) 1
print(ev$values)2

 [1] 3.9952969 1.3683021 1.2531488 1.0666162 0.9749318 0.8854319 0.8582437
 [8] 0.8378168 0.7351154 0.7056058 0.6258888 0.5984852 0.5563688 0.5371627
[15] 0.5244517 0.4771334

psych::scree(sel, pc=FALSE) 1
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7.5 Oblique rotation: oblimin
fit <- psych::fa(sel, nfactors=4, rotate="1
summary(fit)2

Factor analysis with Call: psych::fa(r = sel, nfactors 
= 4, rotate = "oblimin")

Test of the hypothesis that 4 factors are sufficient.
The degrees of freedom for the model is 62  and the 
objective function was  0.19 
The number of observations was  1973  with Chi Square 
=  381.58  with prob <  1.6e-47 

The root mean square of the residuals (RMSA) is  0.03 
The df corrected root mean square of the residuals is  
0.04 

Tucker Lewis Index of factoring reliability =  0.881
RMSEA index =  0.051  and the 10 % confidence 
intervals are  0.046 0.056
BIC =  -88.83
 With factor correlations of 
     MR1  MR2  MR3  MR4
MR1 1.00 0.33 0.41 0.51
MR2 0.33 1.00 0.21 0.31

print(fit$loadings, digits=2, cutoff=0.3, 1

Loadings:
    MR1   MR2   MR3   MR4  
B4d  0.52                  
B4f  0.57                  
B4g  0.63                  
B4i  0.50                  
B4h        0.72            
B4a              0.51      
B4b              0.64      
B4m                    0.50
B4c              0.32      
B4e  0.43                  
B4j  0.31                  
B4k  0.32              0.35
B4l        0.49            
B4n                        
B4o                        
B4p                    0.47

                MR1  MR2  MR3  MR4
SS loadings    1.66 0.96 0.94 0.80
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7.6 Orthogonal rotation: varimax
fit2 <- psych::fa(sel, nfactors=4, rotate=1
summary(fit2)2

Factor analysis with Call: psych::fa(r = sel, nfactors 
= 4, rotate = "varimax")

Test of the hypothesis that 4 factors are sufficient.
The degrees of freedom for the model is 62  and the 
objective function was  0.19 
The number of observations was  1973  with Chi Square 
=  381.58  with prob <  1.6e-47 

The root mean square of the residuals (RMSA) is  0.03 
The df corrected root mean square of the residuals is  
0.04 

Tucker Lewis Index of factoring reliability =  0.881
RMSEA index =  0.051  and the 10 % confidence 
intervals are  0.046 0.056
BIC =  -88.83

print(fit2$loadings, digits=2, cutoff=0.3,1

Loadings:
    MR1   MR4   MR3   MR2  
B4f  0.54  0.30            
B4g  0.58                  
B4m        0.53            
B4a              0.53      
B4b              0.63      
B4h                    0.69
B4c              0.34      
B4d  0.47                  
B4e  0.41        0.33      
B4i  0.48                  
B4j  0.35                  
B4k  0.37  0.47            
B4l                    0.49
B4n                        
B4o                        
B4p        0.47            

                MR1  MR4  MR3  MR2
SS loadings    1.65 1.21 1.16 1.03
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7.7 Visualization and cluster naming
Cluster 1: a: Door-knocking; b:
Distributing campaign material; c:
Calling up voters

Cluster 2: d: Visiting businesses
and organisations; e: Meetings
with party elites/members/groups
f: Media activities ; g: Public
speeches and rallies; i: Personal
ads

Cluster 3: k: Personal website or
blog; m: Facebook; p: Twitter

Cluster 4: h: Direct mailing; l:
Mailing list

loads <- fit2$loadings1
psych::fa.diagram(loads)2
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7.8 Chronbach’s alpha
We can check the internal validity of the factors:

The raw-alpha value for the entire factor tells us how consistent the variables are within
the factor:

For one specific factor:

The next thing to consider is the way alpha would change if each of the variables were
removed.

f1 <- sel[,c("B4a","B4b","B4c")]1
f2 <- sel[,c("B4d","B4e","B4f","B4g","B4i")]2
f3 <- sel[,c("B4k","B4m","B4p")]3
f4 <- sel[,c("B4h","B4l")] # should be combined or removed4

alpha = psych::alpha(f1, check.keys=T) # check.keys=T allows to reverse negative loadings1
print(alpha$total[1:2])2

 raw_alpha std.alpha
 0.5409754 0.5371888

psych::alpha(f1, check.keys=TRUE)$total[1]1

 raw_alpha
 0.5409754
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