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1 EFA versus CFA
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1.1 Main differences between both approaches
In EFA, all measured variables are
related to every latent variable. It
is used to reduce data to a smaller
set of summary variables and to
explore the underlying theoretical
structure of the phenomena.
Therefore, it requires
interpretation.

In CFA, researchers can specify the
number of factors required in the
data and which measured variable
is related to which latent variable.
It asks how well a proposed model
fits a given data. It does not give a
definitive answer, but compares
models (and data).
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1.2 Prerequisites and guidelines
Main prerequisites:

Condition: There are several interval-scaled characteristics (items).

Rule of thumb: At least 50 people and 3x more people as variables (ideally: 5x more
people as variables!).

Guidelines:

Factor analysis does not play well with missing data: it is better to remove cases that
have missing data.

Factor analysis is designed for continuous data (although it is possible to include
categorical data with other methods).
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2 Factors and representation
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2.1 Why use dimensionality reduction?
Dimensionality reduction transforms a data set from a high-dimensional space into a low-
dimensional space.

It is useful when there are too many variables to achieve a good understanding (or
visualization) of the data.

Another issue is multicollinearity: predictors may be measuring the same latent effect(s),
and thus such predictors will be highly correlated.

Factor/dimension: latent dimension responsible for the manifestation of a directly
measured variable

Indicator/item: a directly measured variable that, together with other variables, makes
up a factor/dimension
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2.2 Fundamental theorem
In EFA, each item cannot be fully explained by a linear combination of the factors:

e.g. prejudice = some items + residuals

The variance can be partitioned into common and unique variance:

Common variance: amount of variance that is shared among a set of items
(communality).

Unique variance: any portion of variance that is not common.

Specific variance: variance that is specific to a particular item

Error variance: comes from errors of measurement

= + +. . . + +Zij fi1a1j fi2a2j fipapj ej
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2.3 Important concepts
Factor loading: correlation
coefficient between the item and
the factor (angle between the
factor and a given item)

Squared factor loading: percent
of variance in a given item
explained by the factor

Factor eigenvalue: proportion of
the variance of all directly
measured items that is explained
by a factor

Item communality: proportion of
the variance of an item that is
explained by all factors

Original output from .Hidayat et al. (2018)
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3 EFA procedure
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3.1 Step 1) and procedures in EFA
Step 1) suitability of the data:

Aim: only relevant items should be included in the factor analysis.

Tools:

Have a look at the correlation matrix.

Use the Bartlett’s test of Sphericity:

H0: The variables are uncorrelated in the population

H1: The variables are correlated in the population

Kaiser-Meyer-Olkin criterion (KMO)

test to what extent the variance of one variable is explained by the other
variables (values from .8 desirable)

psych::cortest.bartlett(data)1
psych::KMO(data)2
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3.2 Step 2) and procedures in EFA
Step 2) choice of the number of factors:

Aim: extract the most relevant number of factors given the items

Tools:

Kaiser criterion: identifies the number of factors that explains more variance than
any of the original variables (eigenvalue of 1 onwards: “how much variance each
factor accounts for in your data”)

Scree plot: eigenvalues are plotted in the graphic and the factors that lie above a
“threshold” are extracted

Content plausibility or a priori criterion

# eigenvalue method (Kaiser's rule)1
ev <- eigen(cor(sel)) 2
print(ev$values)3
# scree plot method4
psych::scree(sel, pc=FALSE) 5

14

Multivariate statistics

http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf


3.3 Step 3) and procedures in EFA
Step 3) choice of the type of rotation:

Aim: obtaining a simple structure to
relieve the factor interpretation.

Types of rotations:

Orthogonal (Right Angle): the factor
are uncorrelated

Oblique: the factor are correlated

What is the difference?

In an oblique rotation factors are correlated. We account for
the angle of axis rotation and for the angle of correlation.

Solution

fit_oblique <- psych::fa(data, 1
                         nfactors=4, 2
                         rotate="oblimin")3
fit_orthogonal <- psych::fa(data, 4
                            nfactors=4, 5
                            rotate="varima6
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3.4 Step 4) and procedures in EFA
Step 4) evaluation of the results and possibly repeat 2) & 3):

Aim: interpret the factors.

Process:

loadings from .5 are usually interpreted

ideally, variables load exactly high on one factor and low on another

variables with higher loadings should be given more consideration in naming the
factors

negative charge must be taken into account in the interpretation of the factors

also consider the total variance explained by the factors and the respective
contribution of each factor

summary(fit)1
print(fit$loadings, digits=2, cutoff=0.3, sort=TRUE)2
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3.5 Interpretation: loadings > 1
Factor loadings can be greater than 1. Especially with highly
correlated factors.

“This misunderstanding probably stems from classical
exploratory factor analysis where factor loadings are
correlations if a correlation matrix is analyzed and the factors
are standardized and uncorrelated (orthogonal). However, if
the factors are correlated (oblique), the factor loadings are
regression coefficients and not correlations and as such they
can be larger than one in magnitude.” (Jöreskog, )1999
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3.6 Step 5) and procedures in EFA
Step 5) interpret and write-up results:

Process:

display the results (visualization)

name the factors and assess there theoretical relevance

assess the coherence of the factors (internal validity) using Cronbach’s alpha (varies
between 0 and 1: ideally alpha>0.70).

# visualization1
loads <- fit2$loadings2
psych::fa.diagram(loads)3
# coherence of the factors (internal validity)4
# check.keys=T allows to reverse negative loadings5
alpha_f1 = psych::alpha(f1, check.keys=T) 6
print(alpha_f1$total)7
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3.7 EFA example: Schulz et al. ( )
Factor loading:
correlation coefficient
between the item and
the factor (angle
between the factor and
a given item)

Item communality ( :
proportion of the
variance of an item that
is explained by all
factors

2018

h2
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4 CFA procedure
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4.1 Purpose of CFA
CFA is a model-data fit test based on multivariate regression. Outputs are coefficients of
paths and fit indices.

Items that should theoretically load on a factor should correlate empirically (if not, they
are probably not determined by the same factor). The model-theoretical covariance
matrix as defined by the measurement model should faithfully reproduce the empirical
covariance matrix.

Problem: question of whether a system of equations can be solved mathematically, which
means that the model parameters (free parameters) must be estimated from the empirical
variances and covariances of the manifest variables.

Logic: factor loadings, error terms, factor variance, and, if applicable, permitted
correlations between factors must be calculable/representable with the help of empirical
parameters.

Model identification: if all parameters are to be estimated in the model, then the model is
identified. If not, the model is not solvable (“too many unknowns”) and it is unidentified.
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4.2 Model identification and structure
The model identification is about determining the degrees of freedom of the model.

To do so, we need to understand the different types of parameters:

Fixed parameters: are assigned a specific constant value a priori.

Constrained parameters: are estimated in the model, but have values corresponding
exactly to the value of one or more other parameters.

Free parameters: are considered unknown and should be estimated from the empirical
data.

Identifying the model structure is conducted in two “tasks”:

every factor should be given a metric to be identified (see marker method versus
variance standardization method)

checking whether there is enough information to estimate the model
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4.3 Degree of freedom
If n manifest items are collected within the framework of a project, then the empirical
variances and covariances of these variables can be calculated:

p corresponds to the number of non-redundant values in the variance-covariance matrix
(available “information” for calculating all free parameters of our model).

The degree of freedom of the model ( ) is expressed as the difference between the
available empirical information (p) and the number of parameters to be estimated (q):

p =
n(n + 1)

2

dfM

d = p − qfM
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4.4 Under- and over-identified models
df = 0: when the empirically available information (p) is the same as the number of
parameters to be estimated (q)

df < 0: when the number of model parameters to be estimated (q) exceeds the number of
empirical information given (p), the model is not identified (or not solvable)

The degrees of freedom of the model must be >=0 for a specified model to be identified.

overidentified, df > 0, We should strive for this

just-identified, df = 0, it is ok, but the fit cannot be assessed

non-identified, df < 0, impossible to estimate parameters
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4.5 Marker versus variance stand. methods
Marker method: a reference variable is
chosen and its factor loading is fixed to 1.

Variance standardization method: fixes the
variance of each factor to 1 but freely
estimates all loadings.

How to decide?

Sometimes you want the variance to be meaningful
(e.g. want to know if factor loadings vary over time or
between groups). In this case the marker method is
necessary.

When using the marker method, there should be a “best
candidate” item with regard to the latent factor.

Solution
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4.6 Questions about fixing to 1
Why fixing a factor loading?

Because it then allows you to use the relationship between the latent variable and the observed variable to determine the
variance of the latent variable.

e.g. If we fix the value of the regression coefficient, then this determines the variance of X.

What about the error terms?

Similarly, we fix the coefficient of the error term to 1 so that we can estimate the error variance.

note: it is usually of interest to estimate the error variances. So you hardly ever see models where error variances are fixed
instead of their paths.

Response

Response
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4.7 Under-identification
Example of under-identified model (df < 0):
1 factor, 2 items

quantity of information to estimate the

model: 

number of unique parameters: 5 (1 factor
variance, 2 loadings, 2 residual variances).

1 fixed loading (marker method)

4 free parameters (5 unique - 1 fixed)

degrees of freedom: 3-4=-1 (under-
identified)

Rules of identification:

every factor has been assigned a metric

there are at least 3 indicators in 1-factor model and at
least 2 indicators in multifactor models

p = = = 3
n(n+1)

2

2(2+1)

2

Note
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5 Fit-indices/Fit-measures for CFA

30

Multivariate statistics



5.1 Model quality
Exactly one solution is possible for exactly identified models, several solutions are
possible for over-identified models, the best solution must be found.

The examination at model level (overall model) suggests to check whether the empirical
variance-covariance matrix is reproduced as well as possible by the model-theoretical
variance-covariance matrix.

Traditionally, we use the Chi-Square Test:

H0: empirical covariance matrix = model-theoretical covariance matrix

Chi-Square value is not meaningful by itself: the smaller the better

In just-identified models, Chi-Square is always 0, but it means that we simply cannot
estimate the model fit.

Chi-Square is sensitive to sample size (it is always large and significant, when N>1,000).

Chi-square is obtained from the Maximum Likelihood statistic.
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5.2 Approximate fit indexes
To resolve the problem related to the Chi-square sensitivity under large samples,
approximate fit indexes that are not based on accepting or rejecting the null hypothesis
were developed.

These approximate fit indexes can be classified into incremental and absolute fit indexes.

Incremental fit indexes: assesses the ratio of the deviation of the user model from the
baseline model (worst model) against the deviation of the saturated model (best fitting
model) from the baseline model.

Recommended values: >0.90 or >0.95.

CFI (Comparative Fit Index)

TLI (Tucker-Lewis Index)

Absolute fit indexes: compare the user model to the observed data.

Recommended values: <0.08

RMSEA (Root Mean Squared Error of Approximation)
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5.3 Comparison of different models
Comparing different models can be useful when we have competing theoretical models:

lower RMSEA = descriptively better model

larger CFI = descriptively better model

Statistically verified comparisons between competing models only possible with nested models (= models are exactly
identical except that one path is more/less estimated):

one- and two-factor models (but not 2- and 3- or more factors)

correlated and non-correlated factors

with residual covariance and without it

To do so, we can rely on the Chi-Square Difference Test. If the test is not significant, then the model with more fixed
parameters (i.e. the more economical and therefore theoretically clearer model) is no worse than the model in which more
paths are allowed.

Note
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5.4 CFA example: Schulz et al. ( )2018
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6 Quiz
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6.1 How to identify a 1-factor 2-items model?
When there are only two items, you have 2(2+1)/2=3 elements in the variance covariance
matrix. However, there are 5 free parameters (2 residual variances, 2 loadings and 1 factor
variance). Even if we used the marker method, which the default, that leaves us with 1 less
parameter, resulting in 4 free parameters when we only have 3 to work with.

Use the variance standardization method and equate the second loading to equal the first loading.

Solution

#one factor, two items (var std)1
m <- 'f1 =~ a*q1 + a*q2' 2
onefac2items <- cfa(m, data=dat, std.lv=TRUE) 3
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6.2 Do the marker and the variance stand.
method give the same results?
e.g. 1-factor, 3-items model

With 3-items, we have 3(3+1)/2=6 elements in the variance-covariance matrix. There are 7
free parameters (3 residual variances, 3 loadings and 1 factor variance).

Marker method: it leaves us with 1 less parameter (1 of the loadings), resulting in 6 free parameters. Therefore, the degrees of
freedom is 6-6=0.

Variance standardization method: we fix 1 factor variance. That leaves us with 1 less parameter, resulting in 6 free parameters.
Therefore, the degrees of freedom is 6-6=0.

Solution
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6.3 What if we include the intercepts?

p = n(n+1)/2 + n = 3(3+1)/2+3=9

Total number of parameters: 3 intercepts, 3 loadings, 1 factor variance and 3 residual variances, thus 10.

Variance standardization method: we fix the factor variance to 1.

Free parameters: 10 unique parameters - 1 fixed parameters, thus 9.

Degrees of freedom: 9 known values - 9 free parameters. Therefore, our degrees of freedom is 0 and we have a just-identified
model.

Conclusion: adding in intercepts does not actually change the degrees of freedom of the model.

#one factor three items, with means1
m  <- ' f  =~ q1 + q2 + q32
          q1 ~ 13
          q2 ~ 14
          q3 ~ 1'5
onefac3items_n <- cfa(m, data=dat)6

Solution

39

Multivariate statistics

http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf
http://127.0.0.1:5417/Recap_EFA_CFA_Slides.html?print-pdf

