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Chapter 1

Multivariate Analysis
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Chapter 2

Course content

The course will cover the following topics and entails PC-Lab sessions with prac-
tical examples to familiarize with analysis of variance and regression analysis,
which serve as a basis for many relevant statistical methods. The main goals
relate to being able to understand the procedures in the foreground of each
method (learn-oriented) and to address specific research questions (competence-
oriented). More specifically, the course aims to provide you with the following
abilities:

• In-depth knowledge of the most important methods of multivariate statis-
tics

• Knowledge of the limits and requirements of the procedures
• Comprehending and calculating tasks/cases with R
• Interpretation of the empirical parameters
• Translation of questions/hypotheses into appropriate analysis methods

These abilities will enable us to assess the quality of scientific publications that
are associated with multivariate methods, but also to attend special lectures
and to acquire further multivariate methods autonomously.
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Figure 2.1: Semester schedule

The excel file also gives you an idea of the necessary prior knowledge and of the
workload:

Figure 2.2: Prior knowledge

Figure 2.3: Workload
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Chapter 3

R programming language
and RStudio

The course is taught using the R programming language. R offers a wide variety
of statistics-related libraries and provides a favorable environment for statistical
computing and design. It is used by many quantitative analysts as a program-
ming tool since it’s useful for data importing and cleaning.

RStudio integrates with R as an IDE (Integrated Development Environment)
to provide further functionality. RStudio combines a source code editor, build
automation tools and a debugger.

3.1 Install R and RStudio
For this course, you are required to install both R and RStudio on your personal
computer.

Install R:

• Download the last version of R for Windows or Mac (https://cran.r-
project.org/)

• Save the installation file and execute it.
• Verify that the installation is completed and is working as expected.

Install RStudio:

• Download RStudio: open source version compatible with Windows or Mac
(https://posit.co/download/rstudio-desktop)

• Save the installation file and execute it.
• Verify that the installation is completed and is working as expected.

You should see this logo on your Desktop:
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Figure 3.1: RStudio logo

When opening RStudio, the following panes should be accessible to you:

Figure 3.2: RStudio view

You can verify that everything works as expected by typing the following code
in the console:
print("Hello, welcome!")
## [1] "Hello, welcome!"

3.2 Recommendations
In order to easily share scripts with other people using operating systems differ-
ent from yours (without having problems, for example, with accents and other
special characters), it is recommended to ask RStudio to encode the default
scripts in UTF-8 (universal encoding):

Tools > Global Options > Code > Saving > Default text encoding and choose
UTF-8

This manipulation is not useful for Linux users, who encode in UTF-8 by default.
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3.3 R packages
In R, you have to load extensions (packages) that allow you to perform specific
statistical operations. Each package is a sort of directory of functions, which
you can install (only once is enough) and then call (as many times as you
want) when you need it. We will be using different packages that will be most
useful to follow the course. First, generic packages dedicated to basic statistical
operations, to the manipulation and representation of data, and to the creation
of automated reports are presented. Then, a short list of packages per family
of methods will be provided.

3.4 Databases and external data sources
Several databases will be used during the exercise sessions (as well as for the
demonstrations during the lectures). Most databases are data collected in the
framework of (inter)national opinion surveys.

Concerning the Swiss data, you will be able to access the data immediately
and free of charge on SWISSUbase. If you are not already registered with
SWISSUbase, click here to register.

Cross-national opinion surveys are also available under the following websites:

• European Social Survey (https://www.europeansocialsurvey.org)
• World Value Survey (https://www.worldvaluessurvey.org)
• International Social Survey Program (https://issp.org/)
• Eurobarometer (https://europa.eu/eurobarometer/surveys/browse/all)

3.5 What’s next? Learning more stats
Univariate analysis consists of the analysis of only one variable. It thus deals
with one quantity that changes, but not with causes or relationships. The
main purpose is to describe the data and find patterns that exist within it.
Furthermore, bivariate analysis involves two different variables. The analysis of
this type of data deals with relationships among the two variables.

When the analysis involves three or more variables, it is categorized under multi-
variate. It is similar to bivariate but contains more than one dependent variable.
The ways to perform analysis on this data depends on the goals to be achieved.
Some of the techniques are regression analysis, path analysis, factor analysis,
multivariate analysis of variance, and more.
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Figure 3.3: Types of methods and analyses
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Chapter 4

Quick recap: focus on
bivariate statistics

4.1 Recap: bivariate statistic and hypothesis
testing

When doing research, we go from the simplest to the most complex types of
analysis. Each stage of the analysis brings information for the next step. How-
ever, this is an iterative process as sometimes it is necessary go back to simpler
steps.

• Descriptive / univariate analysis
• Bivariate analysis
• Multivariate analysis (final model)

4.1.1 Univariate statistics
At the univariate stage, the objective is to become familiar with the variables
(terms, missing data, atypical cases, etc.) and to propose a diagnosis of the
variables (e.g. any filtering or recoding needed?). At this stage, we describe the
distribution of observations over a variable (e.g. frequencies of all modalities of a
variable) and we characterize the distribution of a variable (e.g. central tendency
and dispersion) using appropriate tools (e.g. summaries, graphics, etc.).
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Figure 4.1: Univariate statistics

4.1.2 Reporting descriptive statistics
Below are some basic commands to calculate descriptive statistics. R provides
packages/functions, which makes calculating and automatically generating a ta-
ble of summary statistics for categorical and numeric variables. Let’s write an
example with the “world” dataset from the “poliscidata” package by focusing
on the following variables: dem_level4, literacy, pop_age, gender_unequal, re-
ligion. We will generate an example of a summary statistics table using the
“table1” package. A full description of the dataset can be found here.
# install the needed packages
# install.packages("poliscidata")
# install.packages("table1")
# load the data and select the variables
db=poliscidata::world
db=db[,c("country","dem_level4","literacy","pop_age","gender_unequal","religoin")]
# make sure to declare categorical variables as factors
db$country = factor(db$country)
db$dem_level4 = factor(db$dem_level4)
db$religoin = factor(db$religoin)
# get the descriptive table by type of democracy level
table1::table1(~literacy + pop_age + gender_unequal + religoin | dem_level4,

data = db,
na.rm = TRUE,
digits = 1,
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format.number = TRUE)

  Full Democ Part Democ Hybrid Authoritarian Overall
(N=24) (N=52) (N=39) (N=52) (N=167)

literacy
Mean (SD) 100 (3) 90 (10) 70 (20) 70 (20) 80 (20)
Median [Min, Max] 100 [80, 100] 90 [40, 100] 70 [20, 100] 80 [30, 100] 90 [20, 100]
Missing 2 (8.3%) 4 (7.7%) 4 (10.3%) 0 (0%) 10 (6.0%)

pop_age
Mean (SD) 40 (4) 30 (8) 20 (7) 20 (6) 30 (9)
Median [Min, Max] 40 [30, 40] 30 [20, 40] 20 [20, 40] 20 [20, 40] 30 [20, 40]
Missing 0 (0%) 1 (1.9%) 0 (0%) 0 (0%) 1 (0.6%)

gender_unequal
Mean (SD) 0.3 (0.09) 0.5 (0.2) 0.7 (0.09) 0.6 (0.1) 0.5 (0.2)
Median [Min, Max] 0.3 [0.2, 0.5] 0.5 [0.2, 0.8] 0.7 [0.5, 0.8] 0.7 [0.4, 0.9] 0.6 [0.2, 0.9]
Missing 0 (0%) 7 (13.5%) 9 (23.1%) 16 (30.8%) 32 (19.2%)

religoin
Catholic 12 (50.0%) 24 (46.2%) 8 (20.5%) 8 (15.4%) 52 (31.1%)
Orthodox Christian 0 (0%) 9 (17.3%) 4 (10.3%) 3 (5.8%) 16 (9.6%)
Other Christian 7 (29.2%) 8 (15.4%) 7 (17.9%) 5 (9.6%) 27 (16.2%)
Muslim 0 (0%) 4 (7.7%) 14 (35.9%) 28 (53.8%) 46 (27.5%)
Buddhist 1 (4.2%) 2 (3.8%) 4 (10.3%) 4 (7.7%) 11 (6.6%)
Other 3 (12.5%) 5 (9.6%) 2 (5.1%) 3 (5.8%) 13 (7.8%)
Missing 1 (4.2%) 0 (0%) 0 (0%) 1 (1.9%) 2 (1.2%)

4.1.3 Fiability and validity
The Total Survey Error (TSE) framework (Biemer, 2010) accounts for the differ-
ent sources of errors that occur at each stage of an investigation (e.g. coverage
errors, selection errors, and measurement errors). Two important concepts are:
reliability and validity. Reliability refers to the idea of replicability. It accounts
for the degree of consistency of a measurement (by different observers, at differ-
ent times). Validity addresses the conclusions we can draw from of a measure.
For instance, internal validity aims at measuring the fit between the concept
and the measure.

Sample statistics are estimators of population parameters. A particular point
estimate cannot be expected to be exactly equal to the value of the parameter in
the population. Therefore, the estimate always contains a margin of error. For
instance, the normal law suggests that the distribution of a variable is around
an average value and the other values increase and decrease in a homogeneous
and symmetrical way around this average value. The distribution is thus in the
form of a bell curve (or Gaussian curve).
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The margin of error is also called the confidence interval. It corresponds to the
area where we know for a given probability that the average or the percentage
of a value will be found.

For a mean: 𝑥 ± 1.96( 𝜎(𝑋)√𝑛 )

For a proportion: 𝑍𝛼√ 𝑝(1−𝑝)
𝑛

Figure 4.2: Confidence intervals for proportions

4.1.4 Bivariate analysis
Inferential statistics makes use of probability theory. It indicates to the re-
searcher the probability of being wrong by generalizing the findings of his study
to the entire population, assuming a certain risk of error (generally 0.05, or 5%).
To do so, two tools are used: estimation and hypothesis testing.

Three steps are generally applied:

• linking two variables: what values does DV take (e.g. use of social net-
works) according to an IV (e.g. political experience)?

• determining the statistical significance of this relationship (= hypothesis
test)

• quantifying the strength of the relationship (and possibly determine its
direction)

Statistical tools and tests in bivariate analysis depend on the level of measure-
ment of the variables:

Figure 4.3: Types of bivariate analyses

Figure 4.4: Types of bivariate tests
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4.1.4.1 Relationship between two categorical variables

We can examine the relationship between two categorical variables based on
a Chi-square test. The tested hypothesis reads as: what is the probability of
obtaining the frequencies observed in the sample if there was no relationship
between the two variables in the population? The null hypothesis states that
the two variables are independent. The Chi-2 statistic is calculated as follows:

𝐶ℎ𝑖2 = ∑ (𝑜 − 𝑒)2

𝑒
where o is the observed value and e is the expected value.

This calculated Chi-2 statistic is compared to the critical value (obtained from
statistical tables) with df=(r-1)(c-1) degrees of freedom and p = 0.05. If the
calculated Chi-2 statistic is greater than the critical value, then the variables
are not independent of each other and are, thus, significantly associated.

Figure 4.5: Chi-2 test and Cramer’s V

We can reproduce this example with R code:
my_data=data.frame(passed=c(25,8),

failed=c(6,15))
rownames(my_data)=c("participated","not_participated")
chisq=chisq.test(my_data, correct = F) # No Yates correction (conservative)
round(chisq$expected,2)
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## passed failed
## participated 18.94 12.06
## not_participated 14.06 8.94
chisq
##
## Pearson's Chi-squared test
##
## data: my_data
## X-squared = 11.686, df = 1, p-value = 0.0006297

4.1.4.2 Relationship between one interval variable and one categor-
ical variable

We can compare the distribution of values on a quantitative variable (central
tendency, dispersion) for different subpopulations (e.g. different modalities of the
categorical independent variable). To see if the two variables are independent
or if there is a relationship between them, we compare the variation between
groups (mean) and the variation within groups (standard deviation). There is
a relationship between two variables when the different groups are distinct and
homogeneous.

We need to determine the statistical significance of the relationship to see if it
can be generalized to the population. As for the crosstables, it is necessary to
carry out a test of hypotheses. The null hypothesis states that the two variables
are independent (if p<0.05 for the F-test, reject H0).

As with crosstables, there is also a measure of association: Eta ranging from 0
(perfect independence) to 1 (maximum association). In addition, Eta-2 informs
us about the explanatory power of the model: percentage of the variance of the
DV explained by the IV.

4.1.4.3 Relationship between two interval variables

Correlation is a measure of association that provides information on the (lin-
ear) relationship between two quantitative variables, namely its direction and
strength. The correlation coefficient, Pearson’s r, ranges from -1 (negative rela-
tionship) to +1 (positive relationship):

𝑟 = 𝑛 ∑ 𝑥𝑦 − ∑ 𝑥 ∑ 𝑦
√(𝑛 ∑ 𝑥2 − (∑ 𝑥)2)(𝑛 ∑ 𝑦2 − (∑ 𝑦)2)

The p-value can be determined by using the correlation coefficient table for the
degrees of freedom (df = n−2) and calculating the t-value (and determining the
corresponding p-value using the t-table):

𝑡 = 𝑟√
1 − 𝑟2

√
𝑛 − 2
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If the p-value is < 5%, then the correlation between x and y is significant.

Figure 4.6: Pearson’s r calculation

We can reproduce this example with R code:
# create a dataset
my_data <- data.frame(age=c(40,21,25,31,38,47),

weight=c(78,70,60,55,80,66))
ggpubr::ggscatter(my_data, x = "age", y = "weight",

add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson",
xlab = "age", ylab = "weight")

R = 0.35, p = 0.5
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cor.test(my_data$age, my_data$weight, method = "pearson")
##
## Pearson's product-moment correlation
##
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## data: my_data$age and my_data$weight
## t = 0.74025, df = 4, p-value = 0.5002
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.6465987 0.9040106
## sample estimates:
## cor
## 0.3471102

Nota bene: Do not forget to conduct preliminary test to check the test assump-
tions. In particular, is the covariation linear? Verify it using a scatter plot.
Are the variables following a normal distribution? Use Shapiro-Wilk normality
test using the function shapiro.test() and look at the normality plot using the
function ggqqplot(). For the Shapiro-Wilk test, the null hypothesis states that
the data are normally distributed.

4.2 How it works in R?
See the lecture slides on bivariate statistics:

You can also download the PDF of the slides here:

4.3 Quiz
True

False

Statement

Cross tabulation assesses the relationship between two variables with nominal
measurement.

The p-value can be defined as the probability of observing a result when the
null hypothesis is false.

The null hypothesis for the difference of means test posits that one group will
have a higher average than another on the dependent variable.

It is important to assess the magnitude of the result whenever conducting a sta-
tistical test because a higher coefficient always means that it will be statistically
significant.

View Results

My results will appear here

24



4.4 Time to practice on your own
4.4.1 Chi-square test
Try to produce a crosstab in R between the variables standing for democratic
decentralization (decent08) and the type of regime (dem_level4). What can you
derive from the crosstab and its associated Chi-squared test? You can use the
CrossTable() function from the descr package.
db=poliscidata::world
db=db[,c("decent08","dem_level4")]
db$country = factor(db$decent08)
db$dem_level4 = factor(db$dem_level4)
descr::CrossTable(db$decent08, db$dem_level4, expected = F, chisq = T, prop.chisq = F)
## Cell Contents
## |-------------------------|
## | N |
## | N / Row Total |
## | N / Col Total |
## | N / Table Total |
## |-------------------------|
##
## ==========================================================================================
## db$dem_level4
## db$decent08 Full Democ Part Democ Hybrid Authoritarian Total
## ------------------------------------------------------------------------------------------
## No local elections 0 3 4 16 23
## 0.000 0.130 0.174 0.696 0.202
## 0.000 0.097 0.160 0.432
## 0.000 0.026 0.035 0.140
## ------------------------------------------------------------------------------------------
## Lgsltr is elctd bt exctv is ap 5 7 5 14 31
## 0.161 0.226 0.161 0.452 0.272
## 0.238 0.226 0.200 0.378
## 0.044 0.061 0.044 0.123
## ------------------------------------------------------------------------------------------
## Lgsltr and exctv ar lclly elct 16 21 16 7 60
## 0.267 0.350 0.267 0.117 0.526
## 0.762 0.677 0.640 0.189
## 0.140 0.184 0.140 0.061
## ------------------------------------------------------------------------------------------
## Total 21 31 25 37 114
## 0.184 0.272 0.219 0.325
## ==========================================================================================
##
## Statistics for All Table Factors
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##
## Pearson's Chi-squared test
## ------------------------------------------------------------
## Chi^2 = 30.41647 d.f. = 6 p = 0.0000328

Solution: interpretation

The Chi-squared test result indicates a statistically significant association
between the type of local government elections and the level of democracy
(p < 0.05). The observed distribution shows that countries without lo-
cal elections are predominantly authoritarian, while those with both the
legislature and executive locally elected are more likely to be full or par-
tial democracies. The test’s Chi-squared value of 30.41647 with 6 degrees
of freedom suggests that the differences in the distributions are unlikely
to be due to random chance, pointing towards a meaningful relationship
between local election practices and the overall level of democracy in a
country.
Nota bene: The degrees of freedom (df) for a Chi-squared test are calcu-
lated based on the number of categories in the variables being analyzed.
In this case, the degrees of freedom are 6. The formula for calculat-
ing degrees of freedom in a Chi-squared test for a contingency table is:
𝑑𝑓 = (𝑟 − 1) ∗ (𝑐 − 1) = (3 − 1) ∗ (4 − 1) = 2 ∗ 3 = 6. The degrees of
freedom determine which Chi-squared distribution to use for calculating
the p-value. They reflect the complexity of the data and are used to com-
pare the calculated Chi-squared value against the critical value from the
Chi-squared distribution table to determine significance.

4.4.2 t-test
Let’s now assess whether there is a statistically significant difference between
the mean literacy level (literacy) and whether the government is a democracy
(democ). You can rely on the t.test() function. What are your conclusions?
db=poliscidata::world
db=db[,c("democ","literacy")]
db$country = factor(db$democ)
t.test(db$literacy ~ db$democ)
##
## Welch Two Sample t-test
##
## data: db$literacy by db$democ
## t = -3.4616, df = 138.73, p-value = 0.0007142
## alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
## 95 percent confidence interval:
## -17.593909 -4.801764

26



## sample estimates:
## mean in group No mean in group Yes
## 74.12239 85.32022

Solution: interpretation

The Welch Two Sample t-test results indicate a statistically significant dif-
ference in literacy rates between countries categorized as “No” and “Yes”
for democracy (p-value < 0.05). The test statistic (t = -3.4616) and de-
grees of freedom (138.73) support rejecting the null hypothesis, suggesting
that the mean literacy rate is not equal between the two groups. Specifi-
cally, the mean literacy rate is lower in non-democratic countries (74.12)
compared to democratic countries (85.32). The 95% confidence interval
for the difference in means ranges from -17.59 to -4.80, further indicating
that democratic countries tend to have significantly higher literacy rates.

We can also compare the difference between the means for a categorical variables
with more than 2 categories. In this case, we use the ANOVA and the function
aov(). Let’s compare the mean literacy level (literacy) for each type of regime
(dem_level4). What are your conclusions?
db=poliscidata::world
db=db[,c("dem_level4","literacy")]
db$country = factor(db$dem_level4)
summary(aov(db$literacy ~ db$dem_level4))
## Df Sum Sq Mean Sq F value Pr(>F)
## db$dem_level4 3 16942 5647 17.67 6.7e-10 ***
## Residuals 153 48900 320
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 10 observations effacées parce que manquantes

Solution: interpretation

The ANOVA results indicate a highly significant effect of the type of
regime on literacy rates (F = 17.67, p < 0.05). With 3 degrees of free-
dom for the factor and 153 degrees of freedom for residuals, the results
show that differences in types of regime are associated with significant
variations in mean literacy rates.

4.4.3 Pearson correlation test
Finally, let’s correlate the variables for literacy and Gender Inequality Index
(gender_unequal). You can use the cor.test function. What is your conclusion?
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db=poliscidata::world
db=db[,c("gender_unequal","literacy")]
cor.test(db$gender_unequal, db$literacy, method=c("pearson"))
##
## Pearson's product-moment correlation
##
## data: db$gender_unequal and db$literacy
## t = -12.695, df = 126, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.81653 -0.66163
## sample estimates:
## cor
## -0.7491485

Solution: interpretation

The Pearson’s product-moment correlation test results indicate a strong
and statistically significant negative correlation between gender inequality
and literacy rates (p-value < 0.05). The correlation coefficient (r = -0.749)
suggests that higher levels of gender inequality are associated with lower
literacy rates. The 95% confidence interval for the correlation ranges from
-0.816 to -0.662, reinforcing the strength and direction of this relationship.
The test statistic (t = -12.695) and degrees of freedom (126) further sup-
port the conclusion that the observed correlation is highly unlikely to be
due to random chance, indicating a meaningful inverse relationship be-
tween these variables.
Nota bene: It is crucial to remember that correlation does not imply
causation. This means that although gender inequality and lower literacy
rates are related, we cannot conclude that one directly causes the other
based solely on this correlation. Other factors could be influencing both
variables. Establishing causation would require further research, including
experimental or longitudinal studies to determine the direction and nature
of the relationship.
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Chapter 5

Linear regression

5.1 Linear regression analyis
Linear regression is a central method of analysis in the social sciences. In its
simplest form, it resembles bivariate analysis of two metric variables. It is
also an important method as it allows an easy transition to multivariate data
analysis (multivariate regression) and as it allows an extension to categorical
data analysis (logistic, ordinal logit, and multinomial logit models), as well as
hierarchical models.

Linear regression helps us in answering typical questions, such as the existence
of a relationship (dependence) between an independent variable (e.g., education)
and a dependent variable (e.g., income). It also provides us with information
about the strength and the robustness of this relationship (e.g., by controlling
for other variables in the model).

5.2 Excurse: correlation is no proof of causality

Social sciences often rely on (survey) data that were collected for a population
of interest. When data are collected at a single point in time (rather than
repetitively for the same individuals), the main focus of the research is about
whether two phenomena are correlated. Correlation examines association of two
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metric variables (interval/ratio level) and measures the direction and strength to
which two variables are related (between -1 and +1), most often using Pearson’s
correlation coefficient.

Assessing causality between two phenomena requires additional features beyond
correlation. It also requires that a phenomenon X comes before a phenomenon
Y, thus relying on longitudinal data or, with more theoretical argumentation,
cross-sectional data. It also requires that the correlation between X and Y
remains if we control for further relevant variables.

5.3 Simple linear regression
In its simplest form, linear regression is a way of predicting value of one variable
Y through another known variable X. It is a hypothetical model which uses
the the equation of a straight line (linear model) based on the method of least
squares which minimize the sum of squared errors (SSE). What does this mean?

Let’s take a basic example covering the relationship between years of education
(X) and income (Y). Here, a research question could be: Which income can be
attained with ten years of education? Answering this question requires finding
the best fitting line between the two variables and provides us with the formula:

ŷi = a + b xi

where ŷi is the estimated income for an individual, a is the constant (or intercept:
value where education equals 0), xi is the value of education for an individual,
and b is the effect size of education on income (or slope: change in income by a
change in education). The equation for the slope is represented by dividing the
covariance over the variance:

b = ∑(𝑥 − 𝑥) × (𝑦 − 𝑦)
∑(𝑥 − 𝑥)2 = 𝑠𝑥𝑦

𝑠2𝑥

In principle, there are plenty of lines through the data and the line with the
lowest SSE represents the line which best fit the data. In our example, the
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predicted income deviates from the observed income, because all values are not
lying precisely on a line. Therefore, we need to estimate a regression line where
distances (errors) between the predicted and observed values are minimized.
The residuals read as follows:

�̂ = y − ŷi = yi − ̂𝛼 − ̂𝛽xi

Up to here, we are able to interpret the slope coefficient, which gives us the
direction of the effect (+ of -) and the extent to which Y changes if X increases
by 1. However, we also need to assess the statistical significance of the effect.
Indeed, the slope coefficient represents the point estimator (sample) for the
“true” population value (𝛽). Here, the standard error provides us with a measure
for the variability (dispersion) of b and, thereby, the confidence intervals to test
significance of the effect. In this case, the null hypothesis states that there is no
relation between X and Y (using the t-statistic).

5.4 Total variation
How much variance is there on the Y? We are interested in the overall variation.
Therefore, without knowing X, the mean of Y is the best estimate for all Y
values. This is also called the “baseline model” and the resulting error is called
total variation: 𝑇 𝑆𝑆 = ∑ (𝑌𝑖 − 𝑌 )2.

However, knowing X, the regression line is a better estimate for Y. The resulting
error is the residual variation (“residuals”): 𝑆𝑆𝐸 = ∑ (𝑌𝑖 − ̂𝑌𝑖)2.

Therefore, the explained variation in the regression model is: 𝑀𝑆𝑆 =
∑ ( ̂𝑌𝑖 − 𝑌 )2.

The original figure can be found here.
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5.5 Multivariate model
In real world, the relations between two variables are often influenced by “third
variables”. In this case, the bivariate association is not informative if not con-
trolling for the disturbing influence of a third, fourth, fifth, etc. variable (with
different measurement levels). Multivariate regression takes the influence of
other variables on the relation between two variables into account. Therefore, it
is powerful to detect spurious- and suppressor effects, indirect effects, and inter-
action effects. This goal is to estimate the “net” influence of several independent
variables:

ŷ = a + b1 x1 + b2 x2 + bk xk

In multivariate models, the 𝑏 coefficient represents the “raw” regression coef-
ficient. It is important to note that the comparison of 𝑏 coefficients is not
meaningful if the variables are measured in different units (e.g. working time
in hours & family size in number of individuals). A possible solution is the
standardization of the variables (mean=0 & standard deviation=1) in view of
assessing which independent variable has greater effect on Y (relative contribu-
tion). The standardized 𝑏 (written by convention 𝛽) are often referred as the
beta coefficients. In a simple linear model, 𝛽 corresponds to Pearson 𝑟. The
interpretation of the 𝛽 coefficient indicates by how many standard deviations Y
varies when X varies by one standard deviation.

5.6 Explained proportion of the variance
𝑅2 provides us with a measure of accuracy of the regression model, that is how
well does the regression line approximate the real data points. It represents the
share of explained variance (how much variation in Y is explained through X)
and varies between 0 and +1. 𝑅2 tends to increase as we increase the number
of variables in the model.

𝑅2 does not tell us whether the independent variables are true cause of changes
in Y (no causality), whether omitted-variable bias exists (third variable prob-
lem), whether the correct regression was used, and whether appropriate inde-
pendent variables have been chosen. In research, our focus is often only one
part of a complex story.

𝑅2 explained

In addition to the direction, strength and significance of the effect of the b
coefficient, multivariate model also provide a coefficient of determination
𝑅2, which can be expressed as follows:
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𝑅2 = 𝑇 𝑆𝑆 − 𝑆𝑆𝐸
𝑇 𝑆𝑆 = 𝑀𝑆𝑆

𝑇 𝑆𝑆
𝑇 𝑆𝑆 = ∑(𝑦𝑖 − 𝑦)2

𝑀𝑆𝑆 = ∑( ̂𝑦𝑖 − 𝑦)2

𝑆𝑆𝐸 = ∑(𝑦𝑖 − ̂𝑦𝑖)2

MSS is the model sum of squares (also known as ESS, or explained sum
of squares). It is the sum of the squares of the prediction from the linear
regression minus the mean for that variable.
TSS is the total sum of squares associated with the outcome variable,
which is the sum of the squares of the measurements minus their mean.
RSS is the residual sum of squares, which is the sum of the squares of the
measurements minus the prediction from the linear regression.

5.7 Relationship between 𝑟 and 𝑅2

If X and Y are two metric variables, 𝑅2 is a measure of a linear relation between
X and Y, while 𝑟 (Pearson correlation) is the empirical correlation between X
and Y. Importantly, in bivariate regression, 𝑅2 = 𝑟2

𝑥𝑦 (where 𝑟 is a standard-
ized regression coefficient). In multiple regression, 𝑟 represents the correlation
between the observed 𝑦 values and the predicted ̂𝑦 values.
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5.8 F-test for the regression model
F-test is a global check of the regression model. It tests the hypothesis whether
in the population there is a connection between the Y and the X:

• H0: no connection (or 𝑅2 = 0)
• H1: there is a connection (or 𝑅2 not equal 0)

F-test explained

𝑀𝑆𝑀 = 𝑀𝑆𝑆
𝑘

𝑀𝑆𝑅 = 𝑆𝑆𝐸
𝑁 − 𝑘 − 1

, where k is the number of independent variables and N is the number of
individuals.

𝐹 = 𝑀𝑆𝑀
𝑀𝑆𝑅

5.9 Standard estimation error
The standard estimation error characterizes the spread of the y-values around
the regression line and is therefore a quality measure for the accuracy of the
regression prediction:

𝑠𝑒 = √∑ (𝑌𝑖 − ̂𝑌𝑖)2

𝑛 − 𝑘 − 1

The standard error of estimation comes from the fact that:

• Part of the estimation error can be attributed to chance (e.g. “human
randomness”)

• Part is determined by predictors that are not included in the model
• Part of the estimation error arises from measurement errors

FAQ on the standard error of estimation

What contributes to the standard error of estimation? The standard error
of estimation increases with:

• large k, since k is subtracted in the denominator
• if the residuals are large.

Nota bene: if n is large, the estimation error does not automatically de-
crease! This is because for every observation there is also a deviation that
is included in the calculation of the total.
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How do standard estimation errors, intercept and slope behave to each
other? The intercept and slope have nothing to do with explained or un-
explained variance, so nothing to do with the standard error of estimation
either.

5.10 Overfitting
The regression equation is always exactly identified if the number of observations
is only one higher than the number of independent variables (if: n-1 = k).
There are only sufficient “degrees of freedom” if there are more measuring points
(observations) than variables. Only if the deviations are small, then we are
talking about a high quality of fit of the regression calculation.

However, specific sample features only apply to one sample, not to the total
population and not to other samples either. They should not be allowed to
contribute to model quality. As a consequence, the estimate always tends to be
too high. That means:

• The estimated Y values and the empirical Y values correlate (probably)
stronger than in reality

• The residuals are smaller than they should actually be (according to the
conditions in the population)

• The explained variance is consequently greater than it should be

5.11 Shrinkage
The determination coefficient often turns out to be smaller with a new sample.
This phenomenon/principle is called shrinkage. Therefore, a corrected 𝑅2 (ad-
justed 𝑅2) takes this into account by reducing the simple 𝑅2 by a correction
value that is larger: the larger the number of predictors and the smaller the
number of cases (whereas the simple 𝑅2 increases with each added predictor,
the corrected 𝑅2 decreases as more predictors are added).

Adjusted 𝑅2 explained

Adjusted 𝑅2 is a corrected goodness-of-fit (model accuracy) measure for
linear models. Because 𝑅2 tends to optimistically estimate the fit of the
linear regression (as it typically increases as the number of effects are
included in the model), adjusted 𝑅2 attempts to correct for this overes-
timation. Adjusted 𝑅2 might even decrease if a specific effect does not
improve the model.
Adjusted 𝑅2 is calculated as follows:
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𝑅2
𝑎𝑑𝑗 = 1 − [(1 − 𝑅2)(𝑛 − 1)

(𝑛 − 𝑘 − 1) ]

where 𝑛 represents the number of data points and 𝑘 the number of inde-
pendent variables.
So, if 𝑅2 does not increase significantly on the addition of a new indepen-
dent variable, then the value of adjusted 𝑅2 will actually decrease. But,
if adding the new independent variable leads to a significant increase in
𝑅2 value, then the adjusted 𝑅2 value will also increase.

5.12 Statistical significance
A t-test is used to determine whether the regression coefficients deviate signif-
icantly from zero (H0). To calculate the t-value per coefficient, the standard
error (𝑆𝑏) of each coefficient is also necessary. The 𝑆𝑏 characterizes the spread
of the regression coefficients around the population parameter and is therefore
a quality measure for the accuracy of the parameter estimation. The larger the
SE, the smaller the empirical t-value and the less likely it is that the H0 will be
rejected.

The significance of the effect is based on the ratio between a coefficient and its
standard error. This is the empirical value of the t-test (𝑡 = 𝑏/𝑆𝑏), which is
compared with a critical value (c.v.=1.96). The null hypothesis (H0) is accepted
if the critical value is < 1.96. The confidence interval should not contain 0.

Figure 5.1: Confidence interval for the regression slope
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5.13 Dummy variables
Categorical independent variables are problematic because the numeric codes
assigned to their categories are arbitrary (when the code changes, the estimate
changes). A solution suggests associating a binary dummy variable with each
modality (coded 0 and 1). A categorical variable with c modalities is replaced
by c-1 dummies.

The omitted modality serves as a reference category. The choice of the reference
category is made on the basis of empirical considerations (e.g., modality with
the largest number of cases or modality that makes sense from a theoretical
point of view). The coefficients b are interpreted with respect to the reference
category.

5.14 Postulates and assumptions
Linear regression requires using numerical variables (or dichotomous for the
independent variables). A dichotomous variable is always coded 1 and 0. Linear
regression entails several premises:

A regression model should contain exactly those independent variables that are
relevant for the dependent variable, no more and no less. Bivariate regression
models, for example, are always misspecified. The risk with having too few vari-
ables is underfitting, thus leading to too high regression coefficients insufficient
explanations. The risk with too many/irrelevant variables is overfitting, thus
leading relevant significances to disappear and/or random significance to arise.
To conduct linear regression, we must have sufficient degrees of freedom. In
general, this corresponds to at least 10 (or 20) times more cases than variables.

Linear regression only works well for (almost) normally distributed variables.
When normality does not apply, we might think about transforming the vari-
ables (e.g., log, powers, etc.).

There must be an independence of the independent variables, that is an absence
of multicollinearity between the independent variables. Regression coefficients
can be biased if there is a strong correlation between two independent variables.

Furthermore, the error terms must be distributed according to a normal law
and should be zero on average.

There must also be an independence of error terms (to be checked when we have
time series).

Linear regression also requires homoscedasticity, that is the fact that the vari-
ance of the error terms is constant for all values of the independent variables.
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The premises can be tested as follows:

Figure 5.2: Linear regression diagnostics

5.14.1 Multicollinearity
Multicollinearity is not a severe violation of linear regression (only in extreme
cases). In the presence of multicollinearity, the estimates are still consistent, but
there is an increase in standard errors (estimates are less precise). The problem
occurs when researchers include many highly correlated variables (e.g., age and
birth year). Therefore, there should be a theory-driven, careful, and intelligent
variable selection.

Collinearity statistics include the Tolerance which varies from 0 to 1 and must
be >0.4. The VIF (variance inflation factor) measure can also be used which
varies from 1 to ∞ and must be <2.5 (which corresponds to a Tolerance of 0.4).
Note that there is an inverse relationship between Tolerance and VIF values.
As such, Tolerance values >0.4 and VIF values <2.5 are signs of no serious
multicollinearity among the variables.

If there is multicollinearity, there are basically two solutions: either eliminating
one (or more) problematic variables, or merging the problematic variables (e.g.,
in a scale).

• Tolerance = 1 − 𝑅2

• VIF = 1/(1 − 𝑅2)

5.14.2 Normal distribution of the residuals
The residuals must be normally distributed. For instance, the deviations be-
tween estimated and observed values should be zero or close to zero in most
cases. Risks of non-normal residuals result in biased results, thus the signifi-
cance tests are biased. As a reminder:

• for every empirical value Y there is an estimated value Y and a residual
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• the larger the residual for an estimate, the worse the regression estimate
for this estimate

• the larger the residuals are overall, the larger the standard estimation error
(“mean” of the squared residuals), and the poorer the overall goodness of
fit of the regression estimate

5.14.3 Autocorrelation of the residuals (independent er-
rors)

The non-independence of the residuals occurs when sampling is not independent
of one another, i.e. systematically related (time series data, periodic surveys).
In these cases, the risks are:

• Bias in the standard error of the regression coefficients
• Bias in the confidence interval for the regression coefficients

We can verify this using the Durbin-Watson statistics.

5.14.4 Homoscedasticity
Heteroscedasticity is present when there is a relationship between the estimated
y-values and the residuals of the observation values. This can be verified by a
visual inspection - no pattern should be discernible.

5.15 Outliers
The impact of an observation is depending on two factors. First, the discrepancy
(or outlierness) which assesses observations with large residual (observations
whose Y value is unusual given its values on X). Second, the leverage which
assesses observations with extreme value on X with the general rule:

𝑙𝑒𝑣 > (2𝑘 + 2)/𝑛)
• A “high leverage” outlier impacts the model fit, may not have big residuals,

and can increase 𝑅2.
• A “low leverage” outlier has a lower impact on the model fit, has usually

a big residual, inflates standard errors, and decreases 𝑅2.
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There are several strategies to identify outliers, such as conducting frequency
analysis one variable, using the scatterplots for two variables, looking at the
n highest and lowest values, and investigating the residuals (through partial
residual plots or added value plots), as well as relying on influential measures.
For instance:

• Cook’s Distance with the general rule: 𝑑 > 4/(𝑛 − 𝑘 − 1)
• dfbeta with the general rule: 2/√𝑛)

Note that there might be cases where we want to keep outliers. This may include
cases where we have meaningful cluster (e.g., important subgroup in the data)
or cases where outliers might reflect a “real” pattern in the data. In these cases,
it is important to present the results both with and without outliers.

5.16 Interaction effects
Interaction effects enable us to model non-additive effects. In additive models,
the effects of independent variables are the same for the complete sample (e.g.,
effect of education on income is the same for women and men). But, theoreti-
cally, effect should differ for different groups (e.g., women and men).

Interaction effects suggest that the strength of the association between 𝑥1 and𝑦
is dependent on the level of a third variable 𝑥2:

𝑦 = 𝑎 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3(𝑥1 × 𝑥2) + 𝜖

5.16.1 Recap on variable types
Categorical variables (qualitative variables) refer to a characteristic that can’t be
quantifiable. They can be either nominal or ordinal. Nominal variables describe
a name, label or category without natural order (e.g., sex, marital status, race,
etc.). Ordinal variables are defined by an order relation between the different
categories (e.g., ranking of students, sport clubs, social class, etc.).

Numeric variables (quantitative variables) is a quantifiable characteristic whose
values are numbers. Numeric variables may be either continuous or discrete.
Discrete (or interval) variables assume only a finite number of real values within
a given interval (e.g., people in a household, temperature, etc.). Continuous
(or ratio) variables can assume an infinite number of real values within a given
interval (e.g., height/weight of a person).

5.16.2 Interaction between interval variables
For instance, we might be interested in the effect of age (𝑥1) on income (𝑦)
depending on years of schooling (𝑥2). In this case, the interpretation of the
main effect of 𝑥1 is the effect of 𝑥1 if 𝑥2 equals 0 (and conversely for 𝑥2). The
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interpretation of the interaction effect is done by calculating the effect of 𝑥1 on
𝑦 for different levels of 𝑥2 (and conversely for 𝑥2).

Note that the interpretation of interval variables might be problematic if the
zero value is not meaningful (e.g., age=0). A better interpretation of the main
effects can be obtained by centering the variables (through subtracting the mean
score from each data-point). In this case, the interpretation of the intercept (𝑎)
also changes and represents the predicted value of 𝑦 if 𝑥 is the average.

5.16.3 Interaction between dummy and interval variables
For instance, we might be interested in how the association between years of ed-
ucation (𝑥1) and income (𝑦) varies by gender (𝑥2, where 1=women and 0=men).
In this case, the slope (𝑏) and intercept (𝑎) of the regression of 𝑥1 on 𝑦 are de-
pendent on specific values of 𝑥2. Therefore, for each individual value of 𝑥2 (e.g.,
0/1) there is a regression line. The general interpretation rules suggest that the
main effect of 𝑥1 represents the effect of 𝑥1 if 𝑥2 equals 0 (and conversely for
𝑥2). Thus, the interaction effect indicates how much the effect of 𝑥1 changes
with an unit change in 𝑥2 (and conversely for 𝑥2).

5.16.4 Interaction between ordinal and nominal variables
For instance, we might be interested in how the association between the fact
of having a child (𝑥1, where 1=having (at least) a child and 0=no child) and
income (𝑦) varies by gender (𝑥2, where 1=women and 0=men).

5.17 How it works in R?
See the lecture slides on linear regression:

You can also download the PDF of the slides here:

5.18 Quiz
True
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False

Statement

The coefficients of the least squares regression line are determined by minimizing
the sum of the squares of the residuals.

A residual is computed as an x‐coordinate from the data minus an x‐coordinate
predicted by the line.

The critical value for a confidence interval for the slope of the least squares
regression line for all pairs in the population does not depend on the confidence
level.

The variance inflation factor (VIF) can be used to identify this issue of multi-
collinearity.

View Results

My results will appear here

5.19 Example from the literature
The following article relies on linear regression as a method of analysis:

Rauchfleisch, A., & Metag, J. (2016). The special case of Switzerland: Swiss
politicians on Twitter. New Media & Society, 18(10), 2413-2431. Available here.

Please reflect on the following questions:

• What is the research question of the study?
• What are the research hypotheses?
• Is linear regression an appropriate method of analysis to answer the re-

search question?
• What are the main findings of the linear regression analysis?

5.20 Time to practice on your own

You can download the PDF of the exercises here:

The exercises 1 and 2 will use the data from the round 10 of the European Social
Survey (ESS). You can download the data directly on the ESS website.

The objective is to conduct linear regression to explain the consumption of news
about politics and current affairs (‘nwspol’: watching, reading or listening in
minutes). Explanatory variables include a set of political and sociodemographic
variables. Political variables can include: political interest (‘polintr’), confidence
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in ability to participate in politics (‘cptppola’), and self-placement on the left-
right political scale (‘lrscale’). Sociodemographic variables can include: gender
(‘gndr’), age (‘agea’), and years of education (‘eduyrs’). You can also decide to
rely on additional or alternative variables.

Let’s start by loading the dataset, selecting the relevant variables, and filtering
the data for Switzerland only:
library(foreign)
db <- read.spss(file=paste0(getwd(),

"/data/ESS10.sav"),
use.value.labels = F,
to.data.frame = T)

sel <- db |>
dplyr::select(cntry, nwspol, polintr, cptppola, lrscale, gndr, agea, eduyrs) |>
stats::na.omit() |>
dplyr::filter(cntry=="CH") # select respondents from Switzerland

# verify the class and range of the variables
sel$nwspol=as.numeric(sel$nwspol)
sel = sel[sel$nwspol<=180,] # maximally 3hours of news consumption
sel$gndr = as.factor(sel$gndr)
sel$gndr = ifelse(sel$gndr=="2", "female", "male")
sel$gndr = as.factor(as.character(sel$gndr))

5.20.1 Example 1: stepwise regression
Conduct your own linear regression analysis by following a stepwise logic:

• The variable that shows the highest correlation with the dependent vari-
able is selected (in absolute terms)

round(cor(sel[,c("nwspol", "polintr", "cptppola", "lrscale", "agea", "eduyrs")]),2)
## nwspol polintr cptppola lrscale agea eduyrs
## nwspol 1.00 -0.32 0.11 0.05 0.31 -0.01
## polintr -0.32 1.00 -0.47 0.07 -0.19 -0.20
## cptppola 0.11 -0.47 1.00 -0.04 -0.06 0.19
## lrscale 0.05 0.07 -0.04 1.00 0.16 -0.20
## agea 0.31 -0.19 -0.06 0.16 1.00 -0.12
## eduyrs -0.01 -0.20 0.19 -0.20 -0.12 1.00
reg1 =lm(nwspol ~ polintr, data=sel)
summary(reg1)
##
## Call:
## lm(formula = nwspol ~ polintr, data = sel)
##
## Residuals:
## Min 1Q Median 3Q Max
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## -73.89 -29.59 -13.89 16.11 134.71
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 88.196 2.826 31.21 <2e-16 ***
## polintr -14.301 1.162 -12.30 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 37.12 on 1346 degrees of freedom
## Multiple R-squared: 0.1011, Adjusted R-squared: 0.1005
## F-statistic: 151.4 on 1 and 1346 DF, p-value: < 2.2e-16

Interpretation

The variable measuring political interest displays the highest correlation
(in absolute term) with the news consumption. Note that the correlation
is negative because political interest in measured with the item “How in-
terested would you say you are in politics - are you…” where the response
scale is as follows: 1 for “Very interested” and 4 for “Not at all inter-
ested”. Ideally, we would reverse the scale before running the analyses
and interpreting the results.
Concerning the regression model, the coefficient for political interest is
-14.301 (so, +14.301 with a reversed scale) and its effect is significantly
impacting news consumption (p < 0.001). The proportion of explained
variance is given by an 𝑅2 of 0.10 (or 10%).

• The variable that has the highest semi-partial correlation with the depen-
dent variable from the remaining variables is then selected (in absolute
terms). The semi-partial correlation coefficient is the correlation between
all of Y and that part of X which is independent of Z.

res1 = resid(reg1)
round(cor(res1, sel[,c("cptppola", "lrscale", "agea", "eduyrs")]),2)
## cptppola lrscale agea eduyrs
## [1,] -0.05 0.07 0.26 -0.08
summary(lm(nwspol ~ polintr + agea, data=sel))
##
## Call:
## lm(formula = nwspol ~ polintr + agea, data = sel)
##
## Residuals:
## Min 1Q Median 3Q Max
## -93.076 -24.208 -8.404 17.573 139.423
##
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## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 55.94452 4.16625 13.43 <2e-16 ***
## polintr -12.05596 1.14124 -10.56 <2e-16 ***
## agea 0.54653 0.05343 10.23 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 35.77 on 1345 degrees of freedom
## Multiple R-squared: 0.166, Adjusted R-squared: 0.1648
## F-statistic: 133.9 on 2 and 1345 DF, p-value: < 2.2e-16

Interpretation

The variable with the highest semi-partial correlation is age. Therefore,
we include it in the regression model. We see that the effect of political
interest remains significant. Furthermore, the effect of age is positively
impacting news consumption (coef = 0.54) and that it is also significant
(p < 0.001). Note that we cannot compare the effect of political interest
and age as the variables have not been standardized. The proportion of
explained variance is given by 𝑅2 and is now 0.16 (or 16%). Each time
check whether adding more variables significantly improves the model.

5.20.2 Example 2: deductive approach
Conduct your own linear regression analysis by following a deductive logic:

• Include the independent variables simultaneously in the regression equa-
tion

regbt = lm(nwspol ~
polintr +
cptppola +
lrscale +
agea +
eduyrs +
relevel(gndr,"male"),

data=sel)
summary(regbt)
##
## Call:
## lm(formula = nwspol ~ polintr + cptppola + lrscale + agea + eduyrs +
## relevel(gndr, "male"), data = sel)
##
## Residuals:
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## Min 1Q Median 3Q Max
## -93.288 -24.295 -7.841 17.618 139.605
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 62.29255 7.80393 7.982 3.06e-15 ***
## polintr -12.57088 1.33517 -9.415 < 2e-16 ***
## cptppola -0.30173 1.06016 -0.285 0.776
## lrscale 0.28449 0.49602 0.574 0.566
## agea 0.52845 0.05564 9.498 < 2e-16 ***
## eduyrs -0.32865 0.26416 -1.244 0.214
## relevel(gndr, "male")female -2.18405 2.00285 -1.090 0.276
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 35.77 on 1341 degrees of freedom
## Multiple R-squared: 0.1685, Adjusted R-squared: 0.1648
## F-statistic: 45.3 on 6 and 1341 DF, p-value: < 2.2e-16

Interpretation

Adding all the variables together in the model shows that only political
interest and age are significantly impacting on news consumption. The
proportion of explained variance is given by 𝑅2 and remains at 0.16 (or
16%). Adding more variables did not significantly improve the model.

• Include hierarchically (blockwise) the independent variables into groups
and include them in the regression equation group by group (e.g. sociode-
mographic variables first and political variables then).

regbs = lm(nwspol ~
agea +
eduyrs +
relevel(gndr,"male"),

data=sel)
summary(regbs)
##
## Call:
## lm(formula = nwspol ~ agea + eduyrs + relevel(gndr, "male"),
## data = sel)
##
## Residuals:
## Min 1Q Median 3Q Max
## -81.489 -27.006 -8.368 19.546 149.590
##
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## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 21.32329 4.49269 4.746 0.00000229 ***
## agea 0.66480 0.05493 12.103 < 2e-16 ***
## eduyrs 0.29096 0.26232 1.109 0.2676
## relevel(gndr, "male")female -4.16850 2.03222 -2.051 0.0404 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 37.17 on 1344 degrees of freedom
## Multiple R-squared: 0.1002, Adjusted R-squared: 0.09822
## F-statistic: 49.9 on 3 and 1344 DF, p-value: < 2.2e-16

Interpretation

Including only sociodemographic variables (age, gender and years of edu-
cation) shows that age and gender (with “male” as the reference category)
are statistically significant (p < 0.001 and p = 0.04 respectively). The
proportion of explained variance is 0.10 (or 10%).

Each time check whether the (groups of) variables significantly improve the
model.
cat(paste0("R2 from the model with sociodemo variables is: ",

round(summary(regbs)$adj.r.squared,3),
"\n",
"R2 from the model including all the variables is: ",
round(summary(regbt)$adj.r.squared,3)))

## R2 from the model with sociodemo variables is: 0.098
## R2 from the model including all the variables is: 0.165

Interpretation

The proportion of explained variance is 0.10 (or 10%) for the model with
only sociodemographic variables, while it is 0.16 (16%) for the model con-
taining all the variables. However, we have seen that only age and political
interest are significantly related to news consumption (gender looses its
significance in the model containing all the variables).

5.20.3 Example 3: postulates and assumptions
Based on the previous regression model, evaluate the assumptions of linear
regression: no multicolinearity, normality of the residuals, no auto-correlation
of the residuals (especially for time series and panel data), homoscedasticity. It
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is also important to check for outliers.

First, we want to check for multicollinearity. In case of multicollinearity issue,
regression model is not able to accurately associate variance in the outcome vari-
able with the correct predictor variable, leading to incorrect inferences. Beyond
theoretical reflections, there are several steps to test for multicollinearity issues,
such as correlation, VIF (and tolerance):
c <- sel[,-c(1,6)] # removes cntry and gndr
round(cor(c),3)
## nwspol polintr cptppola lrscale agea eduyrs
## nwspol 1.000 -0.318 0.105 0.046 0.311 -0.014
## polintr -0.318 1.000 -0.471 0.072 -0.192 -0.202
## cptppola 0.105 -0.471 1.000 -0.037 -0.057 0.187
## lrscale 0.046 0.072 -0.037 1.000 0.158 -0.203
## agea 0.311 -0.192 -0.057 0.158 1.000 -0.124
## eduyrs -0.014 -0.202 0.187 -0.203 -0.124 1.000
olsrr::ols_vif_tol(regbs)
## Variables Tolerance VIF
## 1 agea 0.9838041 1.016463
## 2 eduyrs 0.9789747 1.021477
## 3 relevel(gndr, "male")female 0.9939485 1.006088

Interpretation

The correlation matrix does not point to very high correlations (e.g., >
0.7). Furthermore, the VIF (<2.5) and Tolerance (>0.4) show no sign of
multicollinearity.

Second, we can test for the normality of the residuals. We can examine the nor-
mal Predicted Probability (P-P) plot to determine if the residuals are normally
distributed (ideally, they they will conform to the diagonal normality line):
plot(regbs, 2)
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Interpretation

In order to make valid inferences, the residuals of the regression (differ-
ences between the observed value of the dependent variable and the pre-
dicted value) should follow a normal distribution. This is approximately
the case here.

Third, we can check for homoscedasticity (variance of the error terms should be
constant for all values of the independent variables). In the context of t-tests
and ANOVAs, the same concept is referred to as equality (or homogeneity) of
variances. We can check this by plotting the predicted values and residuals on
a scatterplot:
plot(regbs, 3)

50



30 40 50 60 70 80

0.
0

0.
5

1.
0

1.
5

2.
0

Fitted values

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

lm(nwspol ~ agea + eduyrs + relevel(gndr, "male"))

Scale−Location
473

1133
914

Interpretation

The residuals need to be spread equally along the ranges of predictors
(ideally, there should be a horizontal line with equally spread points). This
is the case here.

We can also check for linearity of the residuals:
plot(regbs, 1)
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Interpretation

The predictor variables in the regression should have a straight-line re-
lationship with the outcome variable (ideally, the plot would not have a
pattern where the red line is approximately horizontal at zero). This is
the case here.

Nota bene: Using the Durbin-Watson test, we can test the null hypothesis
stating that the errors are not auto-correlated with themselves (if p-value >
0.05, we would fail to reject the null hypothesis).
# car::durbinWatsonTest(regbs)

Fourth, we can also verify if we have outliers. A value > 2(𝑝 + 1)/𝑛 indicates
an observation with high leverage, where 𝑝 is the number of predictors and 𝑛 is
the number of observations (in our case: 2*(3+1)/1348=0.006).
plot(regbs, 5)
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To extract outliers, you might want to flag observations whose leverage score is
more than three times greater than the mean leverage value as a high leverage
point.
model_data <- broom::augment(regbs)
high_lev <- dplyr::filter(model_data,.hat>3*mean(model_data$.hat))
high_lev
## # A tibble: 10 x 11
## .rownames nwspol agea eduyrs `relevel(gndr, "male")` .fitted .resid .hat .sigma
## <chr> <dbl> <dbl> <dbl> <fct> <dbl> <dbl> <dbl> <dbl>
## 1 40 20 45 25 female 54.3 -34.3 0.00998 37.2
## 2 140 60 31 25 female 45.0 15.0 0.0102 37.2
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## 3 345 15 39 27 female 50.9 -35.9 0.0127 37.2
## 4 425 20 20 0 male 34.6 -14.6 0.0106 37.2
## 5 536 60 37 24 male 52.9 7.10 0.00935 37.2
## 6 725 80 76 0 female 67.7 12.3 0.00925 37.2
## # i 4 more rows
## # i 2 more variables: .cooksd <dbl>, .std.resid <dbl>

5.20.4 Example 4: suppressor effect
Suppose a new variable X2 is added to the regression equation in addition to
X1. Suppose, X1 explains substantial variance of Y because both variables
capture well a certain phenomenon (here: B). Under which circumstances does
this increase the model quality (𝑅2)?

Normally, an increase in 𝑅2 can only be expected if:

• X2 is correlated with Y: when both X2 and Y capture a particular phe-
nomenon (here: C)

• X1 and X2 are only weakly correlated because they predominantly capture
different phenomena (here: B and C)

In cases where this ideal scenario is not or only limited valid, R2 will hardly
increase, and may even weaken the influence of X1 on Y when X2 is added.

Now, suppose a predictor variable X1 captures 70% of phenomenon A and 30%
of another phenomenon B. Y, on the other hand, captures phenomenon B dom-
inantly. Then the variable X1 will correlate only very moderately with Y since
the dominance of phenomenon B in Y has virtually prevented a higher corre-
lation. Suppose a new variable X2 is added to the regression equation. Under
what circumstances does this increase the model quality?

Response: suppressor effect

Assume that a second predictor variable X2 also dominantly captures
phenomenon A. Phenomenon B is only weakly or not at all captured in
X2. Since the predictors are controlled simultaneously and reciprocally,
the influence of the first predictor variable X1 is “freed” from the dominant
influence of phenomenon A and suddenly phenomenon B dominates, which
in turn is also dominant in Y. Suddenly there is a strong influence of
the predictor variable X1 on Y! In this case the second variable X2 is
suppressor for the influence of X1 on Y. Why? Only the residual variance
of X1 remains for correlations with Y, but this has very large common
variance components with Y.

53



54



Chapter 6

ANOVA

6.1 What is ANOVA?
An ANOVA (Analysis of Variance) is used to determine whether or not there is
a statistically significant difference between the means of three or more indepen-
dent groups. The two most common types of ANOVA are the one-way ANOVA
and two-way ANOVA.

The one-way analysis of variance (ANOVA), also known as one-factor ANOVA,
is an extension of the independent two-sample t-test for comparing means when
more than two groups are present. You can use the t-test if you just have two
groups. The F-test and the t-test are equivalent in this scenario.

6.1.1 One-way and two-way ANOVA
One-way ANOVA is used to determine how one factor (or independent variable,
IV) impacts a response variable (or dependent variable, DV).

• Example: political affiliation impacts on media coverage.

Two-way ANOVA is used to determine how two factors impact a response vari-
able, and to determine whether or not there is an interaction between the two
factors on the response variable.

• Example: political affiliation and gender impact on media coverage.

6.1.2 Regression versus variance analyses
Regression analysis:

• Relationships between two variables
• Metric independent variables
• Logic: “The bigger X, the bigger Y”
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• Useful to evaluate survey data

Analysis of variance:

• Differences between two or more groups
• Categorical independent variables
• Logic: “More in group A than in group B”
• Useful for evaluating experimental data

But, both methods are based on the same principle, the general linear model
and the F-test.

Regression: The quality of the model results from the deviation of the individual
values from the regression line

ANOVA: Model quality results from the deviation of the individual values from
the group mean

6.1.3 Basic hypotheses of ANOVA
The data is divided into several sub-groups using one single grouping variable
(also called factor variable). The basic hypotheses for ANOVA tests are:

• Null hypothesis: the means of the various groups are identical.
• Alternative hypothesis: at least one sample mean differs from the rest.

ANOVA can only be used when the observations are gathered separately and
randomly from the population described by the factor levels. That is, each
factor level’s data has to be normally distributed and the variance in the sub-
populations must be similar (this can be verified using Levene’s test).

6.1.4 T-test and F-test
If you want to compare the means of two groups, you can do a t-test.

If you want to compare the means of more than two groups, one would have to
compare each group with each other. However, the alpha error cumulation arises
as the error probability of 5% is reclaimed each time for pairwise comparisons:

𝛼 = 1 − (1 − 𝛼)𝑛

where n is the number of tests.

The solution consists in using a test that checks whether at least 2 groups differ
significantly from each other: F-test, which has no alpha-error accumulation.

6.1.5 Decomposition of the variance
To find the total amount of variation within our data we calculate the difference
between each observed data point and the grand mean. We then square these
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differences and add them together to give us the total sum of squares (TSS, also
called SST on the next figure).

𝑇 𝑆𝑆 = ∑ ( ̂𝑦𝑖𝑗 − ̂𝑦𝐺𝑟𝑎𝑛𝑑)2

The model sum of squares (MSS, also called SSM on the next figure) requires us
to calculate the differences between each participant’s predicted value and the
grand mean: it is the sum of the squared distances between what the model pre-
dicts for each data point (i.e., the dotted horizontal line for the group to which
the data point belongs) and the overall mean of the data (the solid horizontal
line).

𝑀𝑆𝑆 = ∑ 𝑛𝑗( ̂𝑦𝑗 − ̂𝑦𝐺𝑟𝑎𝑛𝑑)2

The final sum of squares is the residual sum of squares (SSE, also called SSR on
the next figure), which tells us how much of the variation cannot be explained
by the model. The simplest way to calculate SSE is to subtract MSS from
TSS. It is calculated by looking at the difference between the score obtained
by a person and the mean of the group to which the person belongs. These
distances between each data point and the group mean are squared and then
added together to give the SSE.

𝑆𝑆𝐸 = ∑ (𝑦𝑖𝑗 − ̂𝑦𝑖)2
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The original figure can be found here.

6.1.6 Mean Squares (MS)
The sum of squares depends on the number of groups and the number of cases
per group. MS are variances calculated by dividing the SS by the corresponding
number of degrees of freedom.

• Model Mean Sum of Squares: 𝑀𝑆𝑀 = 𝑀𝑆𝑆
𝑑𝑓𝑀

, 𝑑𝑓𝑀 = 𝑘 − 1.
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• Mean sum of squares of the residuals: 𝑀𝑆𝑅 = 𝑅𝑆𝑆
𝑑𝑓𝑅

, 𝑑𝑓𝑅 = 𝑘(𝑛𝑗 − 1) =
𝑛 − 𝑘.

The test variable 𝐹𝑅𝑎𝑡𝑖𝑜 is calculated as follows: 𝐹 = 𝑀𝑆𝑀
𝑀𝑆𝑅

.

Note that n is the number of observations by group and k is the number of
groups.

Calculate the F-statistics

Let’s assume that we have three groups to compare (A, B, and C). The
following steps must be undertaken in one-way ANOVA:

• Calculate the common variance, often known as residual variance or
variance within samples: 𝑆𝑆𝑤

• Calculate the difference in sample means as follows:
– Calculate the average of each group
– Calculate the difference in sample means: 𝑆𝑆𝑏

The F-statistic is calculated based on the ratio of 𝑆𝑆𝑏/𝑆𝑆𝑤. Note that
a lower ratio suggests that the means of the samples being compared are
not significantly different. A greater ratio, on the other hand, indicates
that the differences in group means are significant.
The figure below shows the calculation of the F-statistic for one-way
ANOVA offer. You can click on the figure to download the excel file.

Figure 6.1: F-statistic calculation

6.1.7 Effect of two or more factors
To compare the influence of several different factors, it is necessary to test the
interaction hypotheses: influence of a factor depending on one or more other
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factors (A and B).

• 𝑀𝑆𝑆𝐴: Calculation with the groups of the factor A (we pretend that B
does not exist)

• 𝑀𝑆𝑆𝐵: Calculation with the groups of the factor B (we pretend that A
does not exist)

• 𝑀𝑆𝑆𝐴𝐵: 𝑀𝑆𝑆 − 𝑀𝑆𝑆𝐴 − 𝑀𝑆𝑆𝐵 indicates what the model can explain
beyond factors A and B.

A separate F is used for each factor and interaction term and 𝑀𝑆 = 𝑆𝑆
𝑑𝑓 as in

single ANOVA.

• Factor A: 𝐹 = 𝑀𝑆𝑀𝐴
𝑀𝑆𝑅

• Factor B: 𝐹 = 𝑀𝑆𝑀𝐵
𝑀𝑆𝑅

• Interaction AxB: 𝐹 = 𝑀𝑆𝑀𝐴𝐵
𝑀𝑆𝑅

6.1.8 Effect size
𝑅2 gives the effect size of the entire model: proportion of variance (TSS) that
can be explained by the model (MSS).

𝑅2 = 𝑀𝑆𝑆𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑇 𝑆𝑆

𝐸𝑡𝑎2 is a measure of effect size that is commonly used in ANOVA models.
It measures the proportion of variance associated with each main effect and
interaction effect in an ANOVA model.

𝐸𝑡𝑎2 = 𝑆𝑆𝑒𝑓𝑓𝑒𝑐𝑡
𝑆𝑆𝑡𝑜𝑡𝑎𝑙

where 𝑆𝑆𝑒𝑓𝑓𝑒𝑐𝑡 is the sum of squares of an effect for one variable and 𝑆𝑆𝑡𝑜𝑡𝑎𝑙 is
the total sum of squares in the ANOVA model.

The value for 𝐸𝑡𝑎2 ranges from 0 to 1, where values closer to 1 indicate a higher
proportion of variance that can be explained by a given variable in the model.

Partial 𝐸𝑡𝑎2 (or 𝐸𝑡𝑎2
𝑝𝑎𝑟𝑡𝑖𝑎𝑙) is the respective effect size of the individual factors:

reflects the proportion of the variance that can be explained by the respective
factors or interaction terms.

• 𝐸𝑡𝑎2 for factor A: 𝑆𝑆𝐴
𝑇 𝑆𝑆

• 𝐸𝑡𝑎2 for factor B: 𝑆𝑆𝐵
𝑇 𝑆𝑆

• 𝐸𝑡𝑎2 for interaction AxB: 𝑆𝑆𝐴𝐵
𝑇 𝑆𝑆

The value for 𝐸𝑡𝑎2
𝑝𝑎𝑟𝑡𝑖𝑎𝑙 also ranges from 0 to 1, where values closer to 1 indicate

a higher proportion of variance that can be explained by a given variable in the
model after accounting for variance explained by other variables in the model.
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Figure 6.2: Eta squared versus partial eta squared

6.1.9 Types of interaction
There exist different types of interaction:

• A null interaction means there is no interaction: effects of factor A on
the dependent variable are therefore the same at all stages of the factor B
(parallel lines)

• An ordinal interaction suggests that the interaction of two factors A and
B is significant: effects of A are not the same at all factor levels of B (lines
do not run parallel but do not cross)

• A disordinal interaction suggests that the interaction of A and B is sig-
nificant, but a disordinal interaction is shown by crossing lines (any main
effect that may be present must not be interpreted)

• A semi-disordinal interaction means that the interaction of A and B is
significant, and it can be shown by crossing lines or by lines that do not
cross (only one of the main effects that may be present may be interpreted)
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The original figure can be found here.

6.1.10 Which groups differ significantly?
The F-test only tells us that there is a significant difference exists, but it does
not tell us which groups differ. Therefore, we need to conduct post-hoc tests
or contrasts within a factor. Between the factors test pair comparisons can be
conducted to check for significant differences.

6.1.11 Statistical assumptions
There are two assumptions for the ANOVA:

• Normal distribution within the groups: dependent variable must be nor-
mally distributed in each group (but not necessarily in the overall sample)

• Homogeneity of variance between groups: variances in the dependent vari-
able must be the same in each group

The normal distribution assumption can be assessed visually. Furthermore, the
Kolmogorov-Smirnov test (KS test) and Shapiro-Wilk test (more suitable from
small samples < 50) can assess the distribution of the dependent variable against
normal distribution, with deviations that are too large becoming significant (not
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desirable!). For serious violations of the normal distribution assumption:

• the dependent variable can be normalized by transformations (e.g. loga-
rithm, squaring, etc.)

• problematic cases can be excluded
• it is also possible to rely on a non-parametric analysis of variance

(e.g. Kruskall-Wallis test)

Levene’s test can be used to test the null hypothesis that variances in the groups
are equal (so rejecting this null hypothesis is undesirable). The analysis of
variance (F-test) is quite robust against violations of the homogeneity of variance
if the group sizes are (approximately) identical. However, post-hoc tests are not
robust! In the case of serious violations of homogeneity of variance, there are
two possibilities:

• Correction of the F-ratio with Welch test (best choice)
• Complete renunciation of F-test and calculation with Kruskall-Wallis test

(non-parametric tests)

However, both are only possible with a one-factor analysis of variance! There-
fore, as an approximation, it is possible to calculate the F-ratio for each factor
individually using the Welch test and the Kruskall Wallis test. If the result is
the same (sign. or not sign.), the result of the ANOVA can be trusted.

6.1.12 In a nutshell
ANOVA is based on the principle of scattering into explained and unexplained
variance (F-test). In multi-factor ANOVA, variance is explained both by the
individual factors and by their interaction (F-value for each factor and the in-
teraction term).

𝐸𝑡𝑎2 provides information about the effect size of the factors and interaction
terms (compared to 𝑅2, which refers to the entire model).

There are different interaction types: ordinal, disordinal and semi-disordinal.
The main effect of a factor can only be interpreted if it is not affected by a
disordinal interaction.

Post-hoc tests show which factor levels differ significantly from each other. The
Simple Effects Analysis shows for which factor levels of a factor A there is a
significant difference due to factor B (interaction).

The ANOVA is based on two assumptions: normal distribution of the dependent
variables and homogeneity of variances in the groups. It is generally quite robust
to violations of these assumptions. There are tests to test these assumptions as
well as procedures to report the results when they are violated.
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6.2 Beyond one-way ANOVA
Below we explain the differences between the statistical methods ANOVA, AN-
COVA, MANOVA, and MANCOVA.

6.2.1 ANCOVA
An ANCOVA (Analysis of Covariance) is also used to determine whether or
not there is a statistically significant difference between the means of three or
more independent groups. Unlike an ANOVA, however, an ANCOVA includes
one or more covariates (CV), which can help us better understand how a factor
impacts a response variable after accounting for some covariate(s).

Covariates are control variables whose influence on the dependent variable
should be controlled. They are often variables that cannot be manipulated at
all for theoretical or practical research reasons (e.g. age, gender, personality
variables). They are included in the modeling as metric variables. Their
influence on the dependent variable is calculated before the influence of the
manipulated independent variables is calculated.

Covariates help us with reducing unexplained variance and within-group vari-
ance (SSE). The effect of the factors on the dependent variable can thus be
determined more accurately (MSS). This improves the explanatory power of the
overall model (𝑅2). The explanatory power of the factors (𝜂2) also improves.

The main advantage is that influences of other variables on the dependent vari-
able can be “controlled” without being manipulated in the experiment. However,
there are also disadvantages. For instance, the strict cause-and-effect logic of
an experimental design does not apply to covariates. Futhermore, covariates
must have a measurement (and they must be scale). Moreover, one can never
include all relevant covariates. Note that we loses one degree of freedom of the
residuals per covariate (SSE).

• Example: political affiliation impacts on media coverage controlling for
the number of social media followers (covariate).

64



6.2.2 ANCOVA assumptions
ANCOVA makes several assumptions about the data, such as:

• Linearity between the covariate and the response variable at each level of
the grouping variable.

– This can be checked by creating a clustered scatterplot of the covari-
ate and the response variable.

• Homogeneity of regression slopes: the slopes of the regression lines, formed
by the covariate and the response variable, should be the same for each
group.

– This can be verified visually as there should be no interaction between
the outcome and the covariate (regression lines drawn by groups
should be parallel).

• The response variable should be approximately normally distributed.
– This can be verified using the Shapiro-Wilk normality test on the

model residuals.
• Homoscedasticity or homogeneity of variance of residuals for all groups.

– Residuals are assumed to have constant variance (homoscedasticity)
• There should be no significant outliers within groups.

Nota bene: If several covariates are used, we also need low correlations between
the covariates (avoidance of multicollinearity). In the case of multicollinearity,
this would lead to a reduction of the degrees of freedom without a simultaneous
reduction of the SS.

6.2.3 ANCOVA Post-hoc tests
“Normal” post-hoc tests cannot be called up for covariance analyses. However,
there are three alternatives:

• Post hoc tests on “estimated marginal means”
• Contrasts
• Simple effects analysis

6.2.4 MANOVA
A MANOVA (Multivariate Analysis of Variance) is identical to an ANOVA,
except it uses two or more response variables. Similar to the ANOVA, it can
also be one-way or two-way.

Example of one-way MANOVA: political affiliation impacts on media coverage
and also on budget.

Example of two-way MANOVA: political affiliation and gender impact on media
coverage and also on budget.
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6.2.5 MANCOVA
A MANCOVA (Multivariate Analysis of Covariance) is identical to MANOVA,
except it also includes one or more covariates. Similar to a MANOVA, a MAN-
COVA can also be one-way or two-way.

Example of one-way MANCOVA: political affiliation impacts on media coverage
and also on budget while controlling for the number of social media followers
(covariate).

Example of two-way MANCOVA: political affiliation and gender impact on me-
dia coverage and also on budget while controlling for the number of social media
followers (covariate).

6.3 How it works in R?
See the lecture slides on one-way (M)AN(C)OVA:

You can also download the PDF of the slides here:

6.4 Quiz
True

False

Statement

A p-value of .03 means that in only 3 in 100 times would a result as large as
the one observed in a sample of data be observed if the null hypothesis were
actually true for the population.

A 2-way ANOVA compares the levels of two or more factors on a continuous
variable.

A covariate is a continuous independent variable in an ANCOVA testing and a
factor is a categorical independent variable in an ANCOVA testing.

In a 2-way MANCOVA, the 2 (or more) dependent variables should be unrelated.

View Results

My results will appear here

6.5 Example from the literature
The following article relies on ANOVA as a method of analysis:
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Otto, L. P., Lecheler, S., & Schuck, A. R. (2020). Is context the key? The (non-)
differential effects of mediated incivility in three European countries. Political
Communication, 37(1), 88-107. Available here.

Please reflect on the following questions:

• What is the research question of the study?
• What are the research hypotheses?
• Is ANOVA an appropriate method of analysis to answer the research ques-

tion?
• What are the main findings of the ANOVA analysis?

6.6 Time to practice on your own

You can download the PDF of the exercises here:

6.6.1 Exercice 1: Gapminder
6.6.1.1 Bivariate recap: mean comparisons and correlations

We will be using the Gapminder data to in the context of t-test, ANOVA and
Chi-squared test. The goal is to train your understanding of the underlying
principles of hypothesis testing and p-values (when to reject the null hypothesis
or accept the alternative hypothesis when making inference about the population
from sample data).

Let’s start by loading the Gapminder data and look at the mean life expectancy
by countries:
data = gapminder::gapminder
aggregate(lifeExp ~ continent, data, mean)
## continent lifeExp
## 1 Africa 48.86533
## 2 Americas 64.65874
## 3 Asia 60.06490
## 4 Europe 71.90369
## 5 Oceania 74.32621

Let’s presume that the mean life expectancy in Africa is 50 years old. We
would like to test whether the observed mean from the sample (here: 48.86) is
statistically different from the “true/presumed” mean:
pop_mean=50 # according to H0
smp_mean=data$lifeExp[data$continent=="Africa"]
t.test(smp_mean, mu=pop_mean, alternative = "two.sided", conf.level = 0.95)
##
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## One Sample t-test
##
## data: smp_mean
## t = -3.0976, df = 623, p-value = 0.002038
## alternative hypothesis: true mean is not equal to 50
## 95 percent confidence interval:
## 48.14599 49.58467
## sample estimates:
## mean of x
## 48.86533

Interpretation

Here, we are testing a single sample against a known value. The results
show that the sample mean (e.g., Africa) significantly differs from the
presumed value (e.g., 50). The t-value is -3.09 and the associated p-value is
0.002. The confidence interval is given and does not contain the presumed
value (e.g., 50).

Now, we would like to test the null hypothesis stating that there is no difference
in the mean life expectancy between Europe and America:
sub=data[data$continent=="Europe" | data$continent=="Americas",]
# visualize the distributions
ggplot2::ggplot(data=sub, ggplot2::aes(
x=lifeExp, group=continent, fill=continent)) +
ggplot2::geom_density(adjust=1.5, alpha=.4)

# conduct t.test
t.test(lifeExp ~ continent, data=sub, mu=0,

alt="two.sided", conf=0.95, var.eq=F, paired=F)
##
## Welch Two Sample t-test
##
## data: lifeExp by continent
## t = -11.861, df = 460.72, p-value < 2.2e-16
## alternative hypothesis: true difference in means between group Americas and group Europe is not equal to 0
## 95 percent confidence interval:
## -8.445287 -6.044612
## sample estimates:
## mean in group Americas mean in group Europe
## 64.65874 71.90369
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Interpretation

Here, we are comparing the mean life expectancy for two continents (e.g.,
Americas and Europe). The results show that there is a statistically sig-
nificant difference in mean life expectancy between the continents (t-value
= -11.86 and p-value < 0.001).

Now, we will add additional variables to the Gapminder data to test the re-
lationship between levels of GDP and life expectancy. Start by creating two
dichotomous variables (high vs low GDP and below vs above average life ex-
pectancy):
library(plyr)
library(dplyr)
sel <- data %>%
dplyr::filter(continent == "Europe") %>%
plyr::mutate(gdp_factor = if_else(gdpPercap > mean(gdpPercap),

"high gdp", "low gdp"),
below_avg_life_exp = if_else(lifeExp < mean(lifeExp),
"low life expectancy", "high life expectancy"))

sel$gdp_factor <- as.factor(sel$gdp_factor)
sel$below_avg_life_exp <- as.factor(sel$below_avg_life_exp)
table(sel$gdp_factor, sel$below_avg_life_exp)
##
## high life expectancy low life expectancy
## high gdp 134 14
## low gdp 55 157

Now, we want to look at the relationship between the two newly created dichoto-
mous variables (high vs low GDP and below vs above average life expectancy).
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We can run a chi square test with the chisq.test() function:
chisq.test(table(sel$gdp_factor, sel$below_avg_life_exp))
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(sel$gdp_factor, sel$below_avg_life_exp)
## X-squared = 143.26, df = 1, p-value < 2.2e-16

Interpretation

The chi square test shows a significant relationship between high vs low
GDP and below vs above average life expectancy (chi square = 143.26 and
p-value < 0.001).

Finally, we can look at the relationship between original variables for GDP and
life expectancy using the cor.test() function:
cor.test(data$lifeExp,data$gdpPercap)
##
## Pearson's product-moment correlation
##
## data: data$lifeExp and data$gdpPercap
## t = 29.658, df = 1702, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.5515065 0.6141690
## sample estimates:
## cor
## 0.5837062

Interpretation

The correlation test shows a significant relationship between GDP and life
expectancy (pearson = 0.58, t-value = 29.65 and p-value < 0.001). Note
that most likely we would actually use a different correlation test, as the
data on life expectancy are non-normal.

Graphical representations

Optionally, we can offer a static visualization of the data for the year 2007:
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data$year <- as.numeric(data$year)
data$country <- as.character(data$country)
library(plotly)
sub = data %>%
filter(year=="2007") %>%
dplyr::select(-year)

p <- sub %>%
arrange(desc(pop)) %>%
mutate(country = factor(country, country)) %>%
ggplot(aes(x=gdpPercap, y=lifeExp, size=pop, color=continent)) +
geom_point(alpha=0.5) +
scale_size(range = c(.1, 24), name=" ") +

ggtitle("Relationship between gdpPerCap and lifeExp in 2007")
# ggplotly(p)
htmlwidgets::saveWidget(

widget = ggplotly(p), #the plotly object
file = "images/Plotly2007_GDPbyLifeExp.html",
selfcontained = TRUE #creates a single html file
)

Optionally, a dynamic visualization is also possible using the following
code:
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colors <- c('#C61951','#A4C6B0','#4AC6B7', '#1972A4', '#965F8A')
r3 <- plot_ly(
data,
x = ~gdpPercap,
y = ~lifeExp,
frame=~year,
color = ~continent,
type = "scatter",
mode="markers",
colors=~colors,
size=~pop,
marker = list(symbol = 'circle', sizemode = 'diameter',

line = list(width = 2, color = '#FFFFFF'), opacity=0.4)) %>%
layout(

title="Relationship between gdpPerCap and lifeExp over time",
xaxis = list(title = 'gdpPercap',

# gridcolor = 'rgb(255, 255, 255)',
# range=c(10,50),
zerolinewidth = 1,
ticklen = 5,
gridwidth = 2),

yaxis = list(title = 'lifeExp',
# gridcolor = 'rgb(255, 255, 255)',
# range=c(40,80),
zerolinewidth = 1,
ticklen = 5,
gridwith = 2),

paper_bgcolor = 'rgb(243, 243, 243)',
plot_bgcolor = 'rgb(243, 243, 243)'

)%>%
animation_opts(

2000, redraw = FALSE
) %>%
animation_slider(

currentvalue = list(prefix = "YEAR ", font = list(color="black"))
)

# r3
htmlwidgets::saveWidget(

widget = r3, #the plotly object
file = "images/PlotlyDynamic_GDPbyLifeExp.html",
selfcontained = TRUE #creates a single html file
)
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6.6.1.2 ANOVA

Let’s see if the different continents really do have different life expectancy. In
order to do this, we will perform an ANOVA using our continents as different
groups, then test for differences between the groups.

Therefore, we would like to test the null hypothesis stating that there is no
difference in the mean life expectancy between more continents (Europe, Amer-
ica, Asia, Africa, and Oceania). Let’s start by visualizing the differences using
boxplots:
ggpubr::ggboxplot(data, x = "continent",

y = "lifeExp",
color = "continent",
ylab = "lifeExp", xlab = "continents")
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Now, we want to formally compute ANOVA test:
res.aov <- aov(lifeExp ~ continent, data = data)
summary(res.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## continent 4 139343 34836 408.7 <2e-16 ***
## Residuals 1699 144805 85
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Interpretation

ANOVA tells us that continent does have a significant effect on life ex-
pectancy (F-value = 408.7 and p-value < 0.001). What we want now is
to be able to tell what those differences are.
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In ANOVA test, a significant p-value indicates that some of the group means
are different, but we do not know which pairs of groups are different. To do so,
we need to perform multiple pairwise-comparison:
TukeyHSD(res.aov)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = lifeExp ~ continent, data = data)
##
## $continent
## diff lwr upr p adj
## Americas-Africa 15.793407 14.022263 17.564550 0.0000000
## Asia-Africa 11.199573 9.579887 12.819259 0.0000000
## Europe-Africa 23.038356 21.369862 24.706850 0.0000000
## Oceania-Africa 25.460878 20.216908 30.704848 0.0000000
## Asia-Americas -4.593833 -6.523432 -2.664235 0.0000000
## Europe-Americas 7.244949 5.274203 9.215696 0.0000000
## Oceania-Americas 9.667472 4.319650 15.015293 0.0000086
## Europe-Asia 11.838783 10.002952 13.674614 0.0000000
## Oceania-Asia 14.261305 8.961718 19.560892 0.0000000
## Oceania-Europe 2.422522 -2.892185 7.737230 0.7250559

Interpretation

The output shows that Africa has a significantly lower life expectancy than
every other continent, followed by Asia, and then the Americas. Oceania
and Europe, meanwhile, have about equal life expectancy.

Remember that the ANOVA test assumes that, the data are normally dis-
tributed and the variance across groups are homogeneous. The residuals versus
fits plot can be used to check the homogeneity of variances:
plot(res.aov, 1)
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Interpretation

The plot shows no evident relationships between residuals and fitted val-
ues (the mean of each groups), which is good. So, we can assume the
homogeneity of variances.

It is also possible to use Levene’ test (or Bartlett’s test) to check the homogeneity
of variances (if the p-value is less than the significance level of 0.05, it means
that there is evidence that the variance across groups is statistically significantly
different):
car::leveneTest(lifeExp ~ continent, data = data)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 4 51.568 < 2.2e-16 ***
## 1699
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Interpretation

From the output of Levene’s test, we can see that the p-value is less than
0.05. This means that there is evidence to suggest that the variance across
groups is statistically significantly different. Therefore, we cannot assume
the homogeneity of variances.
The classical one-way ANOVA test requires an assumption of equal vari-
ances for all groups. An alternative procedure (Welch one-way test), that
does not require that assumption have been implemented in the function
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oneway.test():
oneway.test(lifeExp ~ continent, data = data)
##
## One-way analysis of means (not assuming equal variances)
##
## data: lifeExp and continent
## F = 664.9, num df = 4.00, denom df = 178.95, p-value < 2.2e-16
pairwise.t.test(data$lifeExp, data$continent,

p.adjust.method = "BH", pool.sd = FALSE)
##
## Pairwise comparisons using t tests with non-pooled SD
##
## data: data$lifeExp and data$continent
##
## Africa Americas Asia Europe
## Americas < 2e-16 - - -
## Asia < 2e-16 1.8e-08 - -
## Europe < 2e-16 < 2e-16 < 2e-16 -
## Oceania < 2e-16 9.4e-14 < 2e-16 0.0064
##
## P value adjustment method: BH

To test for the normality of residuals, we can plot the quantiles of the residuals
against the quantiles of the normal distribution:
plot(res.aov, 2)
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Interpretation

As all the points fall approximately along this reference line, we can assume
normality.

The Shapiro-Wilk test on the ANOVA residuals can be used to assess whether
normality is violated:
aov_residuals <- residuals(object = res.aov)
shapiro.test(aov_residuals)
##
## Shapiro-Wilk normality test
##
## data: aov_residuals
## W = 0.9954, p-value = 0.000044

Interpretation

The Shapiro-Wilk test on the ANOVA residuals does not support the
normality assumption.
A non-parametric alternative to one-way ANOVA is Kruskal-Wallis rank
sum test, which can be used when ANOVA assumptions are not met:
kruskal.test(lifeExp ~ continent, data = data)
##
## Kruskal-Wallis rank sum test
##
## data: lifeExp by continent
## Kruskal-Wallis chi-squared = 843.38, df = 4, p-value < 2.2e-16

6.6.2 Exercice 2: ANCOVA
In this exercise, you will learn how to:

• Calculate and interpret one-way and two-way ANCOVA in R
• Check ANCOVA assumptions
• Perform post-hoc testing (multiple pairwise comparisons between groups

to identify groups that are different)

For instance, we are interested in measuring the personalized style of campaign-
ing (Y) explained by the political affiliation (X) and the available budget (CV).
To do so, we will rely on the data covering the Swiss part of the Comparative
Candidate Survey. We will be using the Selects 2019 Candidate Survey.

Let’s start by selecting the relevant variables and by recoding them (also select
politicians with a budget equal or below CHF 50,000.-):
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library(foreign)
db <- read.spss(file=paste0(getwd(),
"/data/1186_Selects2019_CandidateSurvey_Data_v1.1.0.sav"),

use.value.labels = F,
to.data.frame = T)

sel <- db |>
dplyr::select(B12,T9a,B6) |>
stats::na.omit() |>
dplyr::rename("budget"="B12",

"party"="T9a",
"personalization"="B6")

# budget without outliers
sel$budget <- as.numeric(as.character(sel$budget))
sel <- sel[sel$budget<=50000,]
# party recoded into left-center-right
sel$party_r <- NA
sel$party_r <- ifelse(sel$party==3 |

sel$party==5, "1. left", as.character(sel$party_r))
sel$party_r <- ifelse(sel$party==2 |

sel$party==6, "2. center", as.character(sel$party_r))
sel$party_r <- ifelse(sel$party==1 |

sel$party==4, "3. right", as.character(sel$party_r))
sel <- sel[!is.na(sel$party_r),]
# personalization (invert scale)
sel$personalization <- as.numeric(as.character(sel$personalization))
sel$personalization <- (sel$personalization-10)*(-1)

Now, we can create a scatterplot between the covariate (budget) and the re-
sponse variable (personalization), and add regression lines showing the equations
and 𝑅2 by groups (party affiliations):
p = ggpubr::ggscatter(
sel, x = "budget", y = "personalization",
color = "party_r", add = "reg.line", size=0
)+
ggpubr::stat_regline_equation(
ggplot2::aes(label = paste(..eq.label.., ..rr.label.., sep = "~~~~"),

color = party_r)
)

plot(p)
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Interpretation

The figure displays a linear relationship between budget and personaliza-
tion for each training party group.
Furthermore, we can see an interaction between the covariate and the
independent variable (the party trends start to cross from a budget of
~25’000 Swiss francs). This violates the assumption of homogeneity of the
regression slopes (there should be no significant interaction between the
covariate and the grouping variable).

We can now verify whether there is a significant interaction between the covari-
ate and the grouping variable:
sel |> rstatix::anova_test(personalization ~ party_r*budget)
## ANOVA Table (type II tests)
##
## Effect DFn DFd F p p<.05 ges
## 1 party_r 2 1382 39.858 1.48e-17 * 0.055
## 2 budget 1 1382 120.642 5.75e-27 * 0.080
## 3 party_r:budget 2 1382 3.434 3.30e-02 * 0.005

Interpretation

The output shows that there is no homogeneity of regression slopes as the
interaction term is statistically significant (F(2, 1382) = 3.43, p = 0.005).
Nota bene: this does not mean that the model is “wrong” per se, as the
fact that the interaction is significant tells us something interesting about
the relationship between the variables.
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Nota bene: The order of the variables is important in the calculation of
the ANCOVA. You want to remove the effect of the covariate first and
before entering your primary variable or interest:
res.aov <- sel |> rstatix::anova_test(personalization ~ budget + party_r)
rstatix::get_anova_table(res.aov)
## ANOVA Table (type II tests)
##
## Effect DFn DFd F p p<.05 ges
## 1 budget 1 1384 120.220 6.97e-27 * 0.080
## 2 party_r 2 1384 39.718 1.69e-17 * 0.054

Pairwise comparisons can be made to identify groups that are statistically differ-
ent. Bonferroni’s multiple test correction is applied using the emmeans_test()
function from the rstatix package:
compa = sel |>
rstatix::emmeans_test(
personalization ~ party_r, covariate = budget,
p.adjust.method = "bonferroni"
)

compa[,c(3,4,6,7)]
## # A tibble: 3 x 4
## group1 group2 statistic p
## <chr> <chr> <dbl> <dbl>
## 1 1. left 2. center -6.04 1.93e- 9
## 2 1. left 3. right -8.54 3.36e-17
## 3 2. center 3. right -3.26 1.16e- 3

To estimate the normality of the residuals, you first need to calculate the model
using lm(). In R, you can easily augment your data to add predictors and
residuals using the function augment() from the broom package and then use
the Shapiro-Wilk test.
model <- lm(personalization ~ budget + party_r, data = sel)
model.metrics <- broom::augment(model)
rstatix::shapiro_test(model.metrics$.resid)
## # A tibble: 1 x 3
## variable statistic p.value
## <chr> <dbl> <dbl>
## 1 model.metrics$.resid 0.973 1.35e-15
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Interpretation

The Shapiro Wilk test is significant (p < 0.001), so we cannot assume
normality of residuals.

ANCOVA assumes that the variance of the residuals is equal for all groups. This
can be checked using Levene’s test:
model.metrics |> rstatix::levene_test(.resid ~ party_r)
## # A tibble: 1 x 4
## df1 df2 statistic p
## <int> <int> <dbl> <dbl>
## 1 2 1385 6.70 0.00127

Interpretation

The Levene’s test is significant (p < 0.01), so we cannot assume homo-
geneity of the residual variances for all groups.

Furthermore, we need to check for outliers. These can be identified by looking at
the normalized residuals (or studentized residuals), which is the residual divided
by its estimated standard error. The normalized residuals can be interpreted as
the number of standard errors outside the regression line.
outliers = model.metrics |>
dplyr::filter(abs(.std.resid) > 3) |>
as.data.frame()

outliers[,c(1:4,5:6,9)]
## .rownames personalization budget party_r .fitted .resid .cooksd
## 1 1696 10 0 1. left 2.229553 7.770447 0.005059324
## 2 1934 10 200 1. left 2.246654 7.753346 0.005000313
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Chapter 7

Repeated Measurements

7.1 Repeated measurements analyis
The repeated measures ANOVA is used for analyzing data where same subjects
are measured more than once on the same outcome variable under different time
points or conditions. This test is also referred to as a within-subjects ANOVA
(or ANOVA with repeated measures).

Repeated measures ANOVA is the equivalent of the one-way ANOVA, but for
related, not independent groups, and is the extension of the dependent t-test.

In repeated measures ANOVA, the independent variable (also referred as the
within-subject factor) has categories (called levels or groups). We can analyse
data using a repeated measures ANOVA for two types of study design:

• investigating changes in mean scores over three or more time points (e.g.,
pre-, midway and post-intervention)

• investigating differences in mean scores under three or more different con-
ditions

7.1.1 Within- and between-subject variables
For one withing-subject factor, we can consider the example where time is used
to evaluate whether there is any difference in social media reliance across the
several times of data.

We can also consider adding age cohort as a between-subject factor in order to
test effect of age cohort on social media reliance, as well as the interaction effect
between time and age cohort.
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7.1.2 One-way and two-way repeated measurements ana-
lyis

An ANOVA with repeated measures is used to compare three or more group
means where the participants are the same in each group. This usually occurs in
situations when participants are measured multiple times to see changes to an
intervention or when participants are subjected to more than one condition/trial
and the response to each of these conditions wants to be compared.

One-way repeated measures ANOVA is an extension of the paired-samples t-test
for comparing the means of three or more levels of a within-subjects variable.

Two-way repeated measures ANOVA is used to evaluate simultaneously the
effect of two within-subject factors on a continuous outcome variable.

7.2 Assumptions
The repeated measures ANOVA makes the following assumptions:

• No significant outliers
• Normality of the dependent variable (at each time point)

– We can use histograms and normality tests
• Variance of the differences between groups should be equal (sphericity

assumption)
– We can use Mauchly’s test of Sphericity (if p>0.05, sphericity can be

assumed).

Note that, if the above assumptions are not met there are a non-parametric
alternative (Friedman test) to the one-way repeated measures ANOVA. However,
there are no non-parametric alternatives to the two-way (and the three-way)
repeated measures ANOVA. Thus, in the situation where the assumptions are
not met, you could consider running the two-way repeated measures ANOVA
on the transformed and non-transformed data to see if there are any meaningful
differences.

7.3 Mauchly’s test of sphericity
Mauchly’s test of sphericity tests the null hypothesis (H0) that all variances
can be considered homogeneous. A significant result leads to the rejection of
H0 since at least two variances are unequal. Violations of sphericity lead to a
biased F-test and to biased post-hoc test results!

There are two different ways of calculating sphericity violation:

• Greenhouser & Geisser (1959): Rather conservative (the injuries are over-
estimated, especially in the case of minor injuries to the sphericity)

• Huynh & Feldt (1976): Rather liberal (thus rather underestimated)
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Stephen (2002) therefore recommends taking the arithmetic mean of the two
estimates. The F value remains the same, but if the sphericity is violated, the
interpretation of the F value must be adjusted. The degrees of freedom are
corrected downwards, which means that the F value becomes significant less
quickly.

7.4 Logic of repeated measures ANOVA
The logic behind a repeated measures ANOVA is very similar to that of a
between-subjects ANOVA. A between-subjects ANOVA partitions total variabil-
ity into between-groups variability (𝑆𝑆𝑏) and within-groups variability (𝑆𝑆𝑤).
Within-group variability (𝑆𝑆𝑤) is defined as the error variability (𝑆𝑆𝑒𝑟𝑟𝑜𝑟). Fol-
lowing division by the appropriate degrees of freedom, a mean sum of squares
for between-groups (𝑀𝑆𝑏) and within-groups (𝑀𝑆𝑤) is determined and an F-
statistic is calculated as the ratio of 𝑀𝑆𝑏 to 𝑀𝑆𝑤 (or 𝑀𝑆𝑒𝑟𝑟𝑜𝑟).

𝐹 = 𝑀𝑆𝑏
𝑀𝑆𝑤

= 𝑀𝑆𝑏
𝑀𝑆𝑒𝑟𝑟𝑜𝑟

A repeated measures ANOVA calculates an F-statistic in a similar way:

𝐹 = 𝑀𝑆𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠
𝑀𝑆𝑒𝑟𝑟𝑜𝑟

= 𝑀𝑆𝑡𝑖𝑚𝑒
𝑀𝑆𝑒𝑟𝑟𝑜𝑟

A repeated measures ANOVA can further partition the error term, thus reducing
its size:

𝑆𝑆𝑒𝑟𝑟𝑜𝑟 = 𝑆𝑆𝑤 − 𝑆𝑆𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 = 𝑆𝑆𝑇 − 𝑆𝑆𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 − 𝑆𝑆𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠

This has the effect of increasing the value of the F-statistic due to the reduction
of the denominator and leading to an increase in the power of the test to detect
significant differences between means. With a repeated measures ANOVA, as
we are using the same subjects in each group, we can remove the variability due
to the individual differences between subjects, referred to as 𝑆𝑆𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠, from
the within-groups variability (SSw) by treating each subject as a block. That is,
each subject becomes a level of a factor called subjects. The ability to subtract
𝑆𝑆𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 will leave us with a smaller 𝑆𝑆𝑒𝑟𝑟𝑜𝑟 term.
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Figure 7.1: Source: https://statistics.laerd.com/statistical-guides/repeated-
measures-anova-statistical-guide.php

Now that we have removed the between-subjects variability, our new 𝑆𝑆𝑒𝑟𝑟𝑜𝑟
only reflects individual variability to each condition. You might recognize this
as the interaction effect of subject by conditions (how subjects react to the
different conditions).

Computation example for one-way repeated measures ANOVA

The calculation of 𝑆𝑆𝑡𝑖𝑚𝑒 is the same as for 𝑆𝑆𝑏 in an independent
ANOVA, and can be expressed as:

𝑆𝑆𝑡𝑖𝑚𝑒 = 𝑆𝑆𝑏 = ∑ 𝑛𝑖(𝑥𝑖 − 𝑥)2

where 𝑘 = number of conditions, 𝑛𝑖 = number of subjects under each (ith)
condition, 𝑥𝑖 = mean score for each (ith) condition, and 𝑥 = grand mean.
Within-groups variation (𝑆𝑆𝑤) is also calculated in the same way as in an
independent ANOVA, expressed as follows:

𝑆𝑆𝑤 = ∑(𝑥𝑖1 − 𝑥1)2 + ∑(𝑥𝑖2 − 𝑥2)2 + ... + ∑(𝑥𝑖𝑘 − 𝑥𝑘)2

where 𝑘 = number of conditions, and 𝑥𝑖1 = score of the ith subject in
group 1.
We treat each subject as a level of an independent factor called subjects.
We can then calculate 𝑆𝑆𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 as follows:

𝑆𝑆𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 = 𝑘 ∑(𝑥𝑖 − 𝑥)2

where 𝑘 = number of conditions, 𝑥𝑖 = mean subject i, and 𝑥 = grand
mean.
To determine the mean sum of squares for time (𝑀𝑆𝑡𝑖𝑚𝑒) we divide 𝑆𝑆𝑡𝑖𝑚𝑒
by its associated degrees of freedom (𝑘 − 1):
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𝑀𝑆𝑡𝑖𝑚𝑒 = 𝑆𝑆𝑡𝑖𝑚𝑒
(𝑘 − 1)

We do the same for the mean sum of squares for error (𝑀𝑆𝑒𝑟𝑟𝑜𝑟), this
time dividing by (𝑛 − 1)(𝑘 − 1) degrees of freedom:

𝑀𝑆𝑡𝑖𝑚𝑒 = 𝑆𝑆𝑒𝑟𝑟𝑜𝑟
(𝑛 − 1)(𝑘 − 1)

7.5 F-statistic
The sums of squares depend on the number of measurement times and cases, so
the variance (standardized SS) is used to calculate the F-statistic.

We can calculate the F-statistic as:

𝐹 = 𝑀𝑆𝑡𝑖𝑚𝑒
𝑀𝑆𝑒𝑟𝑟𝑜𝑟

We can then ascertain the critical F-statistic for our F-distribution with our de-
grees of freedom for condition and error, and determine whether our F-statistic
indicates a statistically significant result.

The figure below shows that the calculation of the F-statistic for repeated mea-
sures ANOVA offers very different results compared to the results that would
be obtained using the calculation for independent ANOVA. You can click on
the figure to download the excel file.

Figure 7.2: F-statistic calculation
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7.6 Two-way repeated measures ANOVA
A two-way repeated measures ANOVA compares the mean differences between
groups that have been split on two within-subjects factors (also known as in-
dependent variables). A two-way repeated measures ANOVA is often used in
studies where you have measured a dependent variable over two or more time
points, or when subjects have undergone two or more conditions (e.g., “time”
and “conditions”).

Remember that the two-way (repeated measures) ANOVA is an omnibus test
statistic and cannot tell you which specific groups within each factor were sig-
nificantly different from each other. It only tells you that at least two of the
groups were different. To determine which groups differ from each other, you
can use post hoc tests.

7.7 Effect size
The partial eta-squared is specific to the factor 𝑖, but if there are several factors,
you cannot add the individual partial eta-squares to form a total value because
the denominator does not contain the total sum of squares (total variance)!

Partial eta-squared is where the the 𝑆𝑆𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 has been removed from the de-
nominator:

𝜂2
𝑝𝑎𝑟𝑡𝑖𝑎𝑙 = 𝑆𝑆𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

𝑆𝑆𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 + 𝑆𝑆𝑒𝑟𝑟𝑜𝑟

Nota bene: critics about Eta-square

Eta-square overestimates the effect (i.e. the explained variance shares are
assumed to be too large), because in samples there are very likely to be
group differences even if there are no differences in the total population
(especially with small n)!
Therefrore, a recommendation of many authors is not to use the measured
variances (SS) as the basis for the calculation of effect sizes, but their
estimates in the total population (then no more bias). This parameter is
called omega-square.

7.8 Pairwise comparisons
There are several methods to conduct pairwise comparisons:

• Contrasts: particularly useful for repeated measurement designs: each
measurement time point is tested against the previous one: t2 vs. t1, t3
vs. t2, etc.
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• Post-hoc tests (Bonferroni correction is recommended for violations of
sphericity)

• Simple Effects also possible

7.9 Recap on the models’ assumptions
Below is a recap of the assumptions of the different models that we have seen so
far (linear regression, ANOVA, repeated measures ANOVA). The assumptions
are defined, methods and tests are highlighted, as well as solutions proposed.

Figure 7.3: Models’ assumptions

7.10 In a nutshell
In the ANOVA with repeated measures, a distinction is made between the
between-participant and the within-participant variance.

The within-participant variance can be further subdivided into model explained
variance and unexplained (error) variance. The F-value is calculated from their
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ratio.

A prerequisite for the ANOVA with repeated measurements is sphericity (i.e. ho-
mogeneous variances between the measurement times). The Mauchly’s test
checks this requirement, it should not be significant.

If there is no sphericity, the degrees of freedom for the critical F-value must
be corrected. For small violations (epsilon > .75) with the Huynh & Feldt
correction, for larger violations (epsilon < .75) with the Greenhouse & Geisser
correction.

7.11 How it works in R?
Important note: For repeated measures ANOVA in R, it requires the long format
of data. For the long format, we would need to stack the data from each
individual into a vector (data at each time in a single column). If the database
is in short format (data at each time in different columns), the function melt()
from the R package reshape2 can be used. See the lecture slides on repeated
measures ANOVA:

You can also download the PDF of the slides here:

7.12 Quiz
True

False

Statement

When Mauchly’s test for equality of variances fails to show significance, you have
evidence that the data are suitable for the application of the One-way ANOVA
repeated measures test.

You have conducted the One-way ANOVA repeated measures test, and results
indicate an F value of 29.34 with a Sig. (significance) level of .506. Does it
suggest that the means are equal?

If you find overall significance for five measurements, you may then test for
significance for 10 pairwise comparisons.

In a two-way repeated measures ANOVA the distribution of the dependent
variable in each combination of the related groups should be approximately
normally distributed.

View Results

My results will appear here
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7.13 Example from the literature
The following article relies on repeated measurements ANOVA as a method of
analysis:

Hameleers, M., Brosius, A., & de Vreese, C. H. (2021). Where’s the fake news at?
European news consumers’ perceptions of misinformation across information
sources and topics. Harvard Kennedy School Misinformation Review. Available
here.

Please reflect on the following questions:

• What is the research question of the study?
• What are the research hypotheses?
• Is repeated measurements ANOVA an appropriate method of analysis to

answer the research question?
• What are the main findings of the repeated measurements ANOVA anal-

ysis?

7.14 Time to practice on your own

You can download the PDF of the exercises here:

7.14.1 Exercise 1: strengthening environmental protec-
tion over time

Use the data from the Selects 2019 Panel Survey and assess whether respondents’
stance towards strengthening environmental protection has increased over the
first three waves (before, during and after the campaign).

Start by downloading the data and by selecting the variables.
library(foreign)
db <- read.spss(file=paste0(getwd(),

"/data/1184_Selects2019_Panel_Data_v4.0.sav"),
use.value.labels = F,
to.data.frame = T)

sel <- db |>
dplyr::select(id,
# wave 1
W1_f15340d,
# wave 2
W2_f15340d,
# wave 3
W3_f15340d) |>

90

https://misinforeview.hks.harvard.edu/article/wheres-the-fake-news-at-european-news-consumers-perceptions-of-misinformation-across-information-sources-and-topics/
https://www.swissubase.ch/en/catalogue/studies/13846/16586/datasets/1184/2527/overview


stats::na.omit()
# inverse the scale
sel$W1_f15340d=(sel$W1_f15340d-6)*(-1)
sel$W2_f15340d=(sel$W2_f15340d-6)*(-1)
sel$W3_f15340d=(sel$W3_f15340d-6)*(-1)

Next, reshape the data so that there are in a long format.
long <- reshape(as.data.frame(sel),

direction="long",
varying = c("W1_f15340d","W2_f15340d","W3_f15340d"),
v.names = "pro_env",
times =c("wave1","wave2","wave3"))

Then, we can check the normality of the dependent variable using the Shapiro-
Wilk normality test:
# Shapiro-Wilk test
long |>
dplyr::group_by(time) |>
rstatix::shapiro_test(pro_env)

## # A tibble: 3 x 4
## time variable statistic p
## <chr> <chr> <dbl> <dbl>
## 1 wave1 pro_env 0.773 8.31e-45
## 2 wave2 pro_env 0.743 8.74e-47
## 3 wave3 pro_env 0.786 6.03e-44

Interpretation

If the data is normally distributed, the p-value should be greater than
0.05., which is not the case here. Note that we need to test if the data
was normally distributed at each time point. You can also visualize the
distribution over time using boxplots.
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Nota bene: If your sample size is greater than 50, the normal QQ plot
is preferred because at larger sample sizes the Shapiro-Wilk test becomes
very sensitive even to a minor deviation from normality.
# QQ plot
ggpubr::ggqqplot(long, "pro_env", facet.by = "time")
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The assumption of sphericity will be automatically checked during the computa-
tion of the ANOVA test using the R function anova_test(). By using the func-
tion get_anova_table() to extract the ANOVA table, the Greenhouse-Geisser
sphericity correction is automatically applied to factors violating the sphericity
assumption. Now, we can check whether there are group differences:
# group differences
res.aov <- rstatix::anova_test(data = long,

dv = pro_env,
wid = id,
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within = time)
res.aov
## ANOVA Table (type III tests)
##
## $ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 time 2 3682 37.718 6.09e-17 * 0.004
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 1 time 0.993 0.001 *
##
## $`Sphericity Corrections`
## Effect GGe DF[GG] p[GG] p[GG]<.05 HFe DF[HF] p[HF] p[HF]<.05
## 1 time 0.993 1.99, 3655.01 7.76e-17 * 0.994 1.99, 3658.94 7.49e-17 *

The sphericity test is violated (W=0.993 and p<0.05). Therefore, we need to
look at the Greenhouser-Geisser (GG) Huynh-Feldt (HF) corrections. The p-
values (p[GG] and p[HF]) are significant, thus indicating that the observed F
values are significant and accepting the hypothesis that we have different means.

Interpretation

The pro-environment score was statistically significantly different at the
different time points: F = 37.71, p < 0.05. Furthermore, the value for
“ges” (generalized effect size) gives us the amount of variability due to the
within-subjects factor.

Finally, we can assess which group (or time) differences are statistically signifi-
cant:
# Post-hoc test to assess differences
pwc <- long |>
rstatix::pairwise_t_test(
pro_env ~ time,
paired = TRUE,
p.adjust.method = "bonferroni"
)

pwc[,c(2,3,6,8,10)]
## # A tibble: 3 x 5
## group1 group2 statistic p p.adj.signif
## <chr> <chr> <dbl> <dbl> <chr>
## 1 wave1 wave2 -3.15 2 e- 3 **
## 2 wave1 wave3 5.26 1.58e- 7 ****
## 3 wave2 wave3 8.80 3.19e-18 ****
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7.14.2 Exercise 2: two-way repeated measure ANOVA
Let’s create a dataset containing a score measured at three points in time. In
a second step, we will investigate if (frequently) working in group can induce a
significant increase of the score over time.
data <- data.frame(matrix(nrow = 200, ncol = 0))
set.seed(123)
data$score1 <- runif(nrow(data), min=2, max=4.5)
data$score2 <- runif(nrow(data), min=1.5, max=6)
data$score3 <- runif(nrow(data), min=3, max=5.5)
# assign id
data$id = rep(seq(1:100),2)
# assign group work variable
data$groupwork = c(rep(c("always"),100), rep(c("no"),100))
# copy of the data
copy = data
# re-arrange the data
data <- data |>
tidyr::gather(key = "time", value = "score", score1, score2, score3) |>
rstatix::convert_as_factor(id, time)

Now, we will test whether there is significant interaction between working in
group and time on the score. We can use boxplots of the score colored by
working in group:
ggpubr::ggboxplot(
data, x = "time",
y = "score",
color = "groupwork"
)
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We can check whether there are outliers:
data |>
dplyr::group_by(groupwork, time) |>
rstatix::identify_outliers(score)

## [1] groupwork time id score is.outlier is.extreme
## <0 lignes> (ou 'row.names' de longueur nulle)

We next compute Shapiro-Wilk test to test for the normality assumption for
each combinations of factor levels:
# Shapiro
data |>
dplyr::group_by(groupwork, time) |>
rstatix::shapiro_test(score)

## # A tibble: 6 x 5
## groupwork time variable statistic p
## <chr> <fct> <chr> <dbl> <dbl>
## 1 always score1 score 0.952 0.00119
## 2 always score2 score 0.945 0.000418
## 3 always score3 score 0.948 0.000592
## 4 no score1 score 0.964 0.00736
## 5 no score2 score 0.950 0.000789
## 6 no score3 score 0.945 0.000379

Interpretation

The output shows that the score is generally not normally distributed (p
< 0.05).
Note that for large sample size, we can also use the QQ plot:
# QQ plot
ggpubr::ggqqplot(data, "score") +
ggplot2::facet_grid(time ~ groupwork, labeller = "label_both")
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We can assess whether there is a statistically significant two-way interactions
between group work and time:
# We also need to convert id and time into factor variables
# data$groupwork <- as.factor(data$groupwork)
data$time <- as.factor(data$time)
data$id <- as.factor(data$id)
res.aov <- rstatix::anova_test(
data = data,
dv = score,
wid = id,
within = c(groupwork, time)
)

# rstatix::get_anova_table(res.aov)
res.aov
## ANOVA Table (type III tests)
##
## $ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 groupwork 1 99 0.454 5.02e-01 0.000696
## 2 time 2 198 46.979 2.01e-17 * 0.153000
## 3 groupwork:time 2 198 0.050 9.51e-01 0.000163
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 1 time 0.791 0.0000101 *
## 2 groupwork:time 0.809 0.0000317 *
##
## $`Sphericity Corrections`
## Effect GGe DF[GG] p[GG] p[GG]<.05 HFe DF[HF] p[HF]
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## 1 time 0.827 1.65, 163.74 7.74e-15 * 0.839 1.68, 166.17 5.07e-15
## 2 groupwork:time 0.840 1.68, 166.31 9.28e-01 0.853 1.71, 168.85 9.30e-01
## p[HF]<.05
## 1 *
## 2

Interpretation

There is a statistically no significant two-way interactions between group
work and time, F = 0.05, p > 0.05. Furthermore, the shericity test is
violated, thus suggesting to look at the GG and HF corrections.

Procedure for post-hoc test:

A significant two-way interaction indicates that the impact that one factor (e.g.,
group work) has on the outcome variable (e.g., score) depends on the level of
the other factor (e.g., time), and vice versa. So, you can decompose a significant
two-way interaction into:

• i) simple main effect (one-way model of the first variable at each level
of the second variable: e.g., group work at each time point);

• ii) simple pairwise comparisons if the simple main effect is significant
(pairwise comparisons to determine which groups are different: e.g.,
pairwise comparisons between categories of group work).

For a non-significant two-way interaction, you need to determine whether you
have any statistically significant main effects from the ANOVA output (e.g.,
comparisons for group work and time variable).
# Comparisons for group work
res1 = data |>
rstatix::pairwise_t_test(
score ~ groupwork,
paired = TRUE,
p.adjust.method = "bonferroni"

)
res1[,c(2,3,6,8,10)]
## # A tibble: 1 x 5
## group1 group2 statistic p p.adj.signif
## <chr> <chr> <dbl> <dbl> <chr>
## 1 always no -0.661 0.509 ns
# Comparisons for the time variable
res2 = data |>
rstatix::pairwise_t_test(
score ~ time,
paired = TRUE,
p.adjust.method = "bonferroni"
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)
res2[,c(2,3,6,8,10)]
## # A tibble: 3 x 5
## group1 group2 statistic p p.adj.signif
## <chr> <chr> <dbl> <dbl> <chr>
## 1 score1 score2 -4.05 7.31e- 5 ***
## 2 score1 score3 -13.5 5.28e-30 ****
## 3 score2 score3 -5.04 1.02e- 6 ****
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Chapter 8

Logistic regression

8.1 Logistic regression analyis
Logistic regression is a model with a binary dependent variable (e.g., 0 = not
elected versus 1 = elected). In this case, we are interested in knowing the
probability of a phenomenon (e.g., get elected, lose a job, becoming sick, etc)
to occur:

𝑌 (𝑃 = 1) = 𝑎 + 𝑏𝑋 + 𝑒

also referred as Linear Probability Model (LPM). However, the interpretation
is complicated be that fact that applying LPM may return values outside the
[0,1] interval (probabilities are necessary between 0 and 1!).

Example: An increase in political experience (e.g., number of years a candidate
has joined his party) by 1 year increases/decreases the probability of being
elected as a national representative by 𝑏 ∗ 100 percentage points.

Simple regression: professional consultant example

Let’s predict the probability that a candidate employs professional consul-
tants explained by the available campaigning budget in a linear regression
framework.
We can first look at the distribution of political candidates employing a
consultant:
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library(foreign)
db <- read.spss(file=paste0(getwd(),

"/data/1186_Selects2019_CandidateSurvey_Data_v1.1.0.sav"),
use.value.labels = F,
to.data.frame = T)

sel <- db |>
dplyr::select(B11,B12,B6) |>
stats::na.omit() |>
dplyr::rename("consultant"="B11",

"budget"="B12",
"personalization"="B6") |>

plyr::mutate(budget=as.numeric(as.character(as.character(budget))))
sel$consultant <- ifelse(sel$consultant==1,1,0)
# keep candidates with a budget<100'000
sel <- sel[sel$budget<100000,]
sel$budget1000 <- sel$budget/1000
# distribution
nb <- table(sel$consultant)
prop <- round(table(sel$consultant)/nrow(sel), 2)
prop <- cbind(nb,prop)
rownames(prop) <- c("without_consultant","with_consultant")

# show table
as.data.frame(prop)
## nb prop
## without_consultant 1712 0.92
## with_consultant 143 0.08

We see that ~8% of candidates employ a professional consultant,
the probability to employ a consultant being calculated as follows:
143/(143+1712)=8%.
We can plot the relationship between hiring a consultant and the budget:
plot(sel$budget1000,sel$consultant)
abline(lm(consultant ~ budget1000, data=sel))
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We see that the linear line is not ideal and does not fit the data. A
dichotomous dependent variable does not display a normal distribution. It
cannot have a linear relationship with an explanatory variable. Therefore,
linear regression could make predictions smaller than 0 and bigger than 1,
which is not possible!

8.2 The problem with LPM
LPM poses several issues:

• non-linearity
• non-normal distribution of the errors (only two possible outcomes)
• heteroscedasticity
• difficulty in interpreting the results

Therefore, we need a non-linear model predicting probability of an event which
remains in [0,1] bounds. The question is how to constrain all possible outcomes
between 0 and 1.

Non-linear probability models are essential in social sciences which often deal
with categorical dependent variables (e.g., binary, ordinal, nominal). There ex-
ists several models depending of the measurement level of the dependent variable.
Logistic regression allows to predict models for categorical dependent variables
in the simplest binary form and is part of the Generalized Linear Model (GLM)
framework:

• Binomial: binary variable
• Multinomial: categorical variable
• Gaussian: interval variable
• Poisson: count data (discrete)
• Gamma: >0 (non-discrete)
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8.3 Differences between linear and logistic re-
gressions

8.4 Odds ratio (OR)
OR is the relative chance of an event happening under two different conditions.
In other words, it is the ratio of the odds of an event occurring in one group to
the odds of it occurring in another group (relative odds).

Let’s take the following games:

• Game 1: profit of 20, loss of 100, odds of 20/100=0.2
• Game 2: profit of 10, loss of 100, odds of 10/100=0.1

Here, the OR is 0.2/0.1=2. Since the OR is >1, it suggests that the odds in
game 1 is higher than in game 2: the relative chance of winning instead of
loosing is 2-times higher in game 1.

OR: further examples

• An OR of 1.3 means there is a 30% increase in the odds of an out-
come.

• An OR of 2 means there is a 100% increase in the odds of an outcome
(same as saying that there is a doubling of the odds of the outcome).

• An OR of 0.3 means there is an 70% decrease in the odds of an
outcome.

8.5 Constraining all possible outcomes
8.5.1 Step 1: p to odds
First, we need to transform 𝑌 into 𝑝/(1 − 𝑝) so that the binary dependent
variable can be expressed as a function of continuous positive values ranging
from 0 to +∞.

The formal interpretation suggests that “a unit increase in X changes the odds
that Y=1 instead of Y=0 by a factor of 𝑒𝑧 (antilog of the odds), all else equal.

• OR less than 1= negative effect (log-odds)
• OR greater than 1= positive effect (log-odds)
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But, OR give no indication about the magnitude of the implied change in the
probabilities. Let’s look at the following example of two societies:

Figure 8.1: Absolute differences versus odds ratio

In the above scenario, different differences in probabilities can be associated to
the same odds ratio. The social mechanisms responsible for gender effect on
having work are the same in the two societies, but the intensity of the effect
resulting from those mechanisms is much stronger in A than B.

Note that OR can be expressed as % change in the odds 100 ∗ (𝑂𝑅 − 1).

8.5.2 Step 2: odds to log odds
Up to now, we have 𝑜𝑑𝑑𝑠 = 𝑝/(1 − 𝑝), which we now transform into log odds:
𝑙𝑛(𝑝/(1 − 𝑝)).

• If p=0.5, odds=1 and log odds: 0, which suggests no effect
• If p=0.8 of success (0.2 of failure), odds=4 and log odds: 1.38, which

suggests a positive effect
• If p=0.8 of failure (0.2 of success), odds=1/4 and log odds: -1.38, which

suggests a negative effect

So, for log odds, only the sign (direction of the coefficient) can be interpreted.

8.5.3 Step 3: back to probabilities
The problem with log odds (also called logit) is that they are not easy to inter-
pret: “logarithmic odds of an increase in budget by one franc on being elected”.
Therefore, we need to transform log odds into probabilities:

𝑃𝑖(𝑦 = 1) = 𝑒𝑎+𝑏1𝑥1+𝑏2𝑥2

1 + 𝑒𝑎+𝑏1𝑥1+𝑏2𝑥2

where 𝑒1 = 2.71828 and 𝑒𝑙𝑛(𝑥) = 𝑥.
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Figure 8.2: Logistic transformations

8.6 Relationship between probability, logit and
odds ratio

If p is a probability, then p/(1 − p) is the corresponding odds. Furthermore,
the logit of the probability is the logarithm of the odds:

Figure 8.3: Relationship between probability, logit and odds ratio

8.7 Marginal predictions
The main benefit of marginal predictions is that it leaves everything at the
mean, except for the variable that you are interested in. Therefore, one variable
is changing while the others are not.

For a continuous covariate, the margins compute how P(Y=1) changes as X
changes from 0 to 1, controlling for other variables in the model. For a dichoto-
mous independent variable, the marginal effect equates the difference in the
adjusted predictions for two groups (e.g., for women and men). For discrete
covariate, the margins compute the effect of a discrete change of the covariate
(discrete change effects).
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8.8 Model fit
𝑅2 in OLS is a measure for model fit. It is based on differences between real
observations and the regression line. It tries to remove as much error as possible.

In logistic regression, there is no comparable measure since all values on Y are
either 1 or 0 . We are explaining probabilities (not explained variance). The
model fit is based on Maximum Likelihood Estimation (MLE) which tries to
guess parameters that have highest likelihood of producing observed sample
patterns. Likelihood is the probability that our statistical model is actually
found in a sample, thus the better the model fits the data, the more likelier it
is.

The smaller the Log likelihood the better the model fit: by how much Log likeli-
hood has decreased by adding (a) variable(s), and by calculating the significance
of this difference. It is possible to compare models statistically by a Chi-squared
test.

Note 1: Pseudo 𝑅2 = (−2𝐿𝐿0 − −2𝐿𝐿1)/ − 2𝐿𝐿0 has no clear interpretation,
but provides a good way to compare models (rather than assessing fit).

Note 2: Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC) are alternative measures (the smaller AIC or BIC, the better the model
fit).

8.9 How it works in R?
See the lecture slides on logistic regression:

You can also download the PDF of the slides here:

8.10 Quiz
True

False

Statement

Logistic regression is used to make predictions about a dichotomous dependent
variable.

Odds can be defined as the number of times something occurs relative to the
number of times it does not occur.

If the odds ratio of a dummy variable is greater than 1, then the group captured
in the dummy variable is predicted to be more likely than the reference group
to have something occur.
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When there is exactly a 0.5 probability of something occurring, the log odds are
1.

View Results

My results will appear here

8.11 Example from the literature
The following article relies on logistic regression as a method of analysis:

Vogler, D., & Schäfer, M. S. (2020). Growing influence of university PR on
science news coverage? A longitudinal automated content analysis of university
media releases and newspaper coverage in Switzerland, 2003�2017. International
Journal of Communication, 14, 22. Available here.

Please reflect on the following questions:

• What is the research question of the study?
• What are the research hypotheses?
• Is logistic regression an appropriate method of analysis to answer the

research question?
• What are the main findings of the logistic regression analysis?

8.12 Time to practice on your own

You can download the PDF of the exercises here:

8.12.1 Exercise 1: probability of hiring a consultant ac-
cording to campaign personalization

For instance, we are interested in measuring the likelihood of hiring a consultant
(Y) explained by personalized style of campaigning (X). To do so, we will rely
on the data covering the Swiss part of the Comparative Candidate Survey. We
will be using the Selects 2019 Candidate Survey.

We can look at the likelihood of hiring of consultant (B11) by the level of
campaign personalization (where B6 is recoded as 0=attention to the party and
10=attention to the candidate):
library(foreign)
db <- read.spss(file=paste0(getwd(),

"/data/1186_Selects2019_CandidateSurvey_Data_v1.1.0.sav"),
use.value.labels = F,
to.data.frame = T)

sel <- db |>
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dplyr::select(B11,B12,B6) |>
stats::na.omit() |>
dplyr::rename("consultant"="B11",

"budget"="B12",
"personalization"="B6") |>

plyr::mutate(budget=as.numeric(as.character(as.character(budget))))
sel$consultant <- ifelse(sel$consultant==1,1,0)
# keep candidates with a budget<100'000
sel <- sel[sel$budget<100000,]
# reverse the scale: higher values = higher personaliz.
sel$personalization <- as.numeric(as.character(sel$personalization))
sel$personalization <- (sel$personalization-11)*(-1)
# mean by level of personalization
p = aggregate(sel$consultant, by=list(sel$personalization), FUN=mean)
colnames(p) = c("personalization","mean")
p
## personalization mean
## 1 1 0.035398230
## 2 2 0.006896552
## 3 3 0.031690141
## 4 4 0.107279693
## 5 5 0.086956522
## 6 6 0.117391304
## 7 7 0.120000000
## 8 8 0.119047619
## 9 9 0.186440678
## 10 10 0.173913043
## 11 11 0.200000000

Now, we can calculate the odds of hiring a consultant for a very personalized
campaign (personalization = 10):

Interpretation

0.17
(1 − 0.17) = 0.2

This suggests that for each candidate without a consultant, there are 0.2
candidates hiring a consultant. Alternatively:

(1 − 0.17)
(1 − (1 − 0.17)) = 4.9

This suggests that for each candidate hiring a consultant, there are 4.9
candidates without a consultant.

Now, calculate the odds of hiring a consultant for a very low personalized cam-
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paign (personalization = 0):

Interpretation

0.03
(1 − 0.03) = 0.03

Therefore, the odds ratio is: 0.2/0.03 = 6.7, suggesting that the odds of
hiring a consultant are 6.7 higher for candidates with a very high person-
alized campaign than candidates with a very low personalized campaign.

The logit of the dependent variable (Y) is estimated by the following equation:

𝑙𝑜𝑔𝑖𝑡(𝑌 ) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ... + 𝜖

The logit does not indicate the probability that an event occurs. Apply the
necessary transformation to know this probability (prob(Y=1)):

Answer

𝑝𝑟𝑜𝑏𝑎 = 𝑒𝑥𝑝𝑙𝑜𝑔𝑖𝑡

1 + 𝑒𝑥𝑝𝑙𝑜𝑔𝑖𝑡

Let’s go back to our example and run the logistic regression:
model2 <- glm(consultant ~ personalization,

data=sel,
family="binomial")

summary(model2)
##
## Call:
## glm(formula = consultant ~ personalization, family = "binomial",
## data = sel)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.54005 0.19321 -18.32 < 2e-16 ***
## personalization 0.22052 0.03132 7.04 1.92e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1007.64 on 1854 degrees of freedom
## Residual deviance: 957.86 on 1853 degrees of freedom
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## AIC: 961.86
##
## Number of Fisher Scoring iterations: 5

Coefficients in the above output are log odds: 0.22 means that by augmenting
the personalization of one point, log odds change by 0.22.

Now, assess the odds of hiring a consultant for a very personalized campaign
(personalization=10):

Interpretation

𝐿𝑜𝑔𝑖𝑡 = −3.29 + 0.23 ∗ 10 = −0.99
The odds ratio for the personalization variable is exp(0.22)=1.24. This
suggests that, for each unit increase on the personalization scale, the odds
increase by a factor of 1.24, which is equivalent to an increase of 24%.
Beware that the odds ratio does not provide information about the prob-
ability of hiring a consultant. We can calculate the probability as follows:

𝑃 𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑒𝑥𝑝(𝑙𝑜𝑔𝑖𝑡)
1 + 𝑒𝑥𝑝(𝑙𝑜𝑔𝑖𝑡) = 𝑒−0.99

(1 + 𝑒−0.99) = 0.37

8.12.2 Exercise 2: predict the reliance of social media as
campaigning tool

Using the same dataset, let’s investigate the following question: how does the
level of campaign personalization and the fact of being affiliated to a govern-
mental party, and being an incumbent affect the reliance of social media as
campaigning tool?

In this scenario, the binary outcome is whether politicians rely on social media
(combination of B4m and B4p) and the predictors are personalization (B6),
being affiliated to a governmental party (based on T9), and being an incumbent
(T11c).

Let’s prepare the data, including the selection and recoding of the relevant
variables:
library(foreign)
db <- read.spss(file=paste0(getwd(),

"/data/1186_Selects2019_CandidateSurvey_Data_v1.1.0.sav"),
use.value.labels = F,
to.data.frame = T)

sel <- db |>
dplyr::select(B4m,B4p,T9,B6,T11c) |>
stats::na.omit() |>
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dplyr::rename("facebook"="B4m",
"twitter"="B4p",
"party"="T9",
"personalization"="B6",
"incumbentNC"="T11c")

# reliance on social media
sel$twitter=ifelse(sel$twitter>0,1,0)
sel$facebook=ifelse(sel$facebook>0,1,0)
sel$SMuse=ifelse(sel$facebook==1 | sel$twitter==1, 1, 0)
sel$SMuse=as.factor(sel$SMuse)
# party in government
sel$in_gov=ifelse(sel$party %in% c(1,2,3,4,7), 1, 0)
sel$in_gov=as.factor(sel$in_gov)
# personalization (invert scale)
sel$personalization <- as.numeric(as.character(sel$personalization))
sel$personalization <- (sel$personalization-10)*(-1)
# incumbent
sel$incumbentNC <- as.factor(sel$incumbentNC)
# head
head(sel[,c(3:ncol(sel))])
## party personalization incumbentNC SMuse in_gov
## 1 11 0 0 0 0
## 2 11 5 0 1 0
## 3 11 3 1 1 0
## 4 11 5 0 1 0
## 5 11 0 0 0 0
## 6 11 0 0 0 0

Now, we can conduct logistic regression and interpret the findings. Recall that,
for log odds, we interpret only the sign of the coefficients (positive/negative).
Coefficients smaller than 1 suggests a negative effect (negative log odds) and
coefficients larger than 1 suggest positive effect (positive log odds). You can
also transform to percentages using the formula 100*(OR-1):
mod <- glm(SMuse ~

personalization +
in_gov +
incumbentNC,

data=sel,
family = "binomial")

summary(mod)
##
## Call:
## glm(formula = SMuse ~ personalization + in_gov + incumbentNC,
## family = "binomial", data = sel)
##
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## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.26890 0.08100 3.320 0.000901 ***
## personalization 0.16152 0.02046 7.896 2.89e-15 ***
## in_gov1 0.08618 0.09972 0.864 0.387475
## incumbentNC1 0.96787 0.30413 3.182 0.001461 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2585.2 on 2094 degrees of freedom
## Residual deviance: 2487.0 on 2091 degrees of freedom
## AIC: 2495
##
## Number of Fisher Scoring iterations: 4
# transformation
exp(coef(mod))
## (Intercept) personalization in_gov1 incumbentNC1
## 1.308526 1.175299 1.090003 2.632324

Interpretation

In our example: when personalization goes up by one, the odds of relying
on social media increase by a factor of 1.16, controlling for the other
variables in the model. In other terms, when personalization goes up by
one, the odds of using social media increase by 16% (100(1.16-1)).

The marginal effects indicate a change in predicted probability as X increases
by 1. For categorical predictors, you have to take the predicted probability of
the group A minus the predicted probability of the group B.

There are different ways of calculating predicted probabilities. In the social sci-
ences, the most commonly used are Adjusted Predictions at the Means (APMs).
For instance, we can assess the predicted probabilities of using social media
for political incumbents, when the personalization level is at the mean and for
incumbent not affiliated to a party in government.
newdata = data.frame(personalization=5,

in_gov="0",
incumbentNC="1")

predict(mod, newdata, type="response")
## 1
## 0.8853785

Nota bene: Marginal Effects at the Means (MEMs) are calculated by taking
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the difference of two APMs. Let’s also calculate the predicted probabilities of
using social media for political non-incumbents, when the personalization level
is at the mean and for politicians not affiliated to a party in government. Then,
calculate the difference between both predicted probabilities:
newdata2 = data.frame(personalization=5,

in_gov="0",
incumbentNC="0")

print(paste0("for incumbents: ",
round(predict(mod, newdata, type="response"),2),
"; for non-incumbents: ",
round(predict(mod, newdata2, type="response"),2)))

## [1] "for incumbents: 0.89; for non-incumbents: 0.75"

In logistic regressions, there is no such R-squared value for general linear models.
Instead, we can calculate a metric known as McFadden’s R-Squared, which
ranges from 0 to just under 1, with higher values indicating a better model fit.
We use the following formula to calculate McFadden’s R-Squared:

1 − (𝐿𝐿𝑚𝑜𝑑𝑒𝑙
𝐿𝐿𝑛𝑢𝑙𝑙

)

with(summary(mod), 1 - deviance/null.deviance)
## [1] 0.03798762
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Chapter 9

Moderation analysis

9.1 Moderation analysis
Moderation analysis allows us to test for the influence of a third variable, Z,
on the relationship between variables X and Y. Rather than testing a causal
link between these other variables, moderation tests for when or under what
conditions an effect occurs.

For instance, we can start with a bivariate relationship between an input variable
X (e.g. training) and an outcome variable Y (e.g. test score). We can hypothesize
that there is a relationship between them. A moderator variable Z (e.g. gender)
is a variable that alters the strength of the relationship between X and Y.

Moderators can strengthen, weaken, or reverse the nature of a relationship.
Moderation can be tested by looking for significant interactions between the
moderating variable (Z) and the independent variable (X).

Nota bene: Moderators (when) are conceptually different from mediators
(how/why) but some variables may be a moderator or a mediator depending
on your question.
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9.2 Similarity with ANOVA
The moderation is an interaction and therefore comparable to the interaction
in ANOVA. If X and moderator are dichotomous, the moderation corresponds
to a 2x2 ANOVA.

However, a moderator moderates the causal relationship from X to Y. The scale
level can be dichotomous, categorical or metric. Furthermore, a moderator must
be causally independent of X.

Technically, moderations (interactions) are linked multiplicatively in the regres-
sion analysis: A x B.

Statistically, the moderator and X must always be considered “in isolation” (not
just as moderation or interaction).

An illustration of the similarity between a simple moderation analysis and a
2x2 ANOVA can be found below (this example is taken from Igartua and Hayes
(2021)):

Figure 9.1: Similarity between a simple moderation analysis and a 2x2 ANOVA

9.3 The linear regression framework
Moderation analysis can be conducted by adding one (or multiple) interaction
terms in a regression analysis. For example, if Z is a moderator for the relation
between X and Y, we can fit a regression model:

𝑌 = 𝛽0 + 𝛽1 ∗ 𝑋 + 𝛽2 ∗ 𝑍 + 𝛽3 ∗ 𝑋𝑍 + 𝜖
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𝑌 = 𝛽0 + 𝛽2 ∗ 𝑍 + (𝛽1 + 𝛽3 ∗ 𝑍) ∗ 𝑋 + 𝜖
Thus, if 𝛽3 is not equal to 0, the relationship between X and Y depends on the
value of Z, which indicates a moderation effect.

If Z is a dichotomous/binary variable (e.g. gender) the above equation can be
written as:

𝛽0 + 𝛽1 ∗ 𝑋 + 𝜖
for male (Z=0)

𝛽0 + 𝛽2 + (𝛽1 + 𝛽3) ∗ 𝑋 + 𝜖
for female (Z=1)

9.4 Interpretation and centering
If X and/or moderator become significant, main effects are present. If the
moderation term becomes significant, there is a moderation effect. The (possibly
significant) influences of X and the moderator are then so-called “conditional”
effects.

The value 0 usually has no meaningful meaning (e.g. in rating scales 1 to 5 there
is no zero at all). Therefore, it is a good practice to centering means subtracting
the overall mean from each value. The centering changes the interpretation
decisively:

• if has the value 0, the moderator is moderately developed
• if has negative values, below-average characteristics are present
• if has positive values, above-average characteristics are present

The change in meaning must be taken into account in the interpretation:

• influence of the predictor on Y with an average expression of the moderator
• influence of the moderator on Y with an average expression of the predictor

9.5 Multicollinearity
The moderation term is formed with moderator and X. However, the moderator
and X are also contained individually in the regression equation. This often
leads to multicollinearity (i.e. low tolerances or high VIF values).

If moderator and X are centered, the symptoms of multicollinearity are superfi-
cially defused. However, the multicollinearity itself remains.
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Reminder: Multicollinearity means that predictors are (too strongly) related to
each other. Since the moderation term also consists of A (or B), it can easily
correlate with A (or B).

9.6 Simple slopes
When the moderation effect becomes significant, it needs to be “illustrated” in
order to make it interpretable. To do so, we can rely on simple slope analy-
sis: comparison of the regression lines for low, medium and high levels of the
moderator.

Typically, we use the mean value of the moderator, as well as the values + and
- 1 SD are used, but theoretically any values can be considered.

9.7 Significance range according to Johnson &
Neyman (only if moderation metric)

This method suggests to conduct comparison of the regression equation for many
characteristics of the moderator to identify areas of significance.

It is more useful than simple slopes for metric moderators, since illustrations
result in less loss of information in the moderator’s levels. The effect (b) of the
X on Y is now illustrated in the diagram as a function of the moderator (not to
be confused with a regression line!), as well as the confidence interval for this
effect:
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9.8 Steps in the analysis
A moderation analysis typically consists of the following steps:

• compute the interaction term X*Z
• fit a multiple regression model with X, Z, and XZ as predictors
• test whether the regression coefficient for XZ is significant or not
• interpret the moderation effect
• display the moderation effect graphically.

9.9 Important remarks: variable’s effect as a
function of a moderator

A conceptual representation of a simple moderation model with a single moder-
ating variable Z modifying the relationship between X and Y.

Let’s assume that X and Z are either dichotomous or continuous and the outcome
variable Y is a continuous dimension suitable for analysis with linear regression,
we have the following equations:

̂𝑌 = 𝑎 + 𝑏1 ∗ 𝑋 + 𝑏2 ∗ 𝑍 + 𝑏3 ∗ 𝑋𝑍 = 𝑎 + (𝑏1 + 𝑏3 ∗ 𝑍)𝑋 + 𝑏2 ∗ 𝑍
In this representation, the weight for X is not a single number but, rather, a
function of Z: 𝑏1 + 𝑏3 ∗ 𝑍. The output is sometimes called the simple slope of X
or the conditional effect of X. The coefficients 𝑏1 and 𝑏2 may or may not have a
substantive interpretation, depending on how X and Z are coded or, in the case
of dichotomous X and Z, what two numbers are used to represent the groups in
the data.

Important remarks:

• It is never correct to interpret 𝑏1 as the effect of X on Y “controlling for”
the effect of Z and XZ.

• It usually is not correct to interpret 𝑏1 as the “average effect” of X or the
“main effect” of X (a term from analysis of variance that applies only when
X and W are categorical)

• 𝑏1 can be the main effect of X from a 2X2 ANOVA if X and Z are coded
appropriately.

• Similar arguments apply to the interpretation of 𝑏2.

Correct interpretation:

• 𝑏1 is the conditional effect of X on Y when Z = 0.
• 𝑏1 is the estimated difference in Y between two cases in the data that differ

by one unit in X but have a value of 0 for Z.
• 𝑏2 is the conditional effect of Z on Y when X = 0.
• When X = 0, the conditional effect of Z reduces to 𝑏2.
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• When Z = 0, X’s effect equals 𝑏1; when Z = 1, X’s effect equals 𝑏1 + 𝑏3;
when Z = 2, X’s effect is 𝑏1 + 2𝑏3, and so forth.

9.10 Reporting the results
The following must be observed to report moderation analysis:

• always shows both (un)standardized effects
• in the case of a statistically significant interaction, the conditional effects

(aka main effects) can no longer be interpreted unquestioningly
• in the case of a statistically significant interaction, the difference between

several slopes in the model (e.g. those represented as simple slopes) is
significant

9.11 Further resources
For a long time the PROCESS macro has been one of the best ways of test-
ing moderations (interactions) when using SPSS. In December 2020, Hayes has
released the PROCESS function for R.

To download Hayes’ PROCESS macro for R go here.

A tutorial about how to use the process() function in R can be found here.

9.12 In a nutshell
A moderation analysis is a regression analysis in which the dependent variable
(Y) is predicted from an independent variable (X) and a moderator (Z) and the
interaction of both (XZ).

X and Z should be centered prior to analysis. On the one hand, this simplifies
the interpretation of the results and, on the other hand, helps against the effects
of multicollinearity in the model.

If the interaction term becomes significant, there is moderation.

The moderation effect can be illustrated by simple slopes and significance areas
according to Johnson-Neyman.

9.13 How it works in R?
See the lecture slides on moderation analysis:

You can also download the PDF of the slides here:
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9.14 Example from the literature
The following article relies explains moderation (and mediation) analysis with
an illustrative example:

Igartua, J. J., & Hayes, A. F. (2021). Mediation, moderation, and conditional
process analysis: Concepts, computations, and some common confusions. The
Spanish Journal of Psychology, 24, e49. Available here.

Please reflect on the following questions:

• How is simple moderation analysis similar to a 2x2 ANOVA?
• What is the difference between “main effects” and “simple effects” models?
• What is the advantage of using Johnson-Neyman technique to illustrate

conditional effects?

9.15 Quiz
True

False

Statement

Moderation occurs when the relationship between two variables (X and Y)
changes as a function of a third variable (Z).

Moderation occurs When a third variable (Z) affects the relation between an
independent variable (X) and the dependent variable (Y).

The simple main (conditional) effect is when the effect of X (or Z) on Y when
Z (or X) is equal to 0.

Standardization of the variables is useful to mitigate multicollinearity.

View Results

My results will appear here

9.16 Time to practice on your own

You can download the PDF of the exercises here:

In this exercise, we will use the data “protest.sav” (Hayes, 2022) which can be
downloaded here under “data files and code”. Especially, we will focus on the
following variables:

• Protest (independent variable): A lawyer protests against gender discrim-
ination (experimental group, dichotomous 0 = no and 1 = yes)
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• Like (dependent variable): assessment of the lawyer (scale 1-7)
• Sexism (moderator): perception of sexism as a ubiquitous problem in

society (scale 1-7)

9.16.1 Exercise 1: protest with a continuous moderator
We want to test the assumption that when women believe that sexism is a
problem in society, they like the lawyer more when he protests sexism than
when he doesn’t protest.

Start by drawing the regression equations.

Solution: equation

The regression equation go as:

𝑌𝑖 = 𝛽0 + 𝛽1 ∗ 𝑃 𝑟𝑜𝑡𝑒𝑠𝑡𝑖 + 𝛽2 ∗ 𝑆𝑒𝑥𝑖𝑠𝑚𝑢𝑠𝑖 + 𝛽3 ∗ (𝑃𝑟𝑜𝑡𝑒𝑠𝑡 ∗ 𝑆𝑒𝑥𝑖𝑠𝑚𝑢𝑠𝑖) + 𝜖

Now, we want to know if the overall model is significant? Start by importing
the data:
# load the data
library(foreign)
db <- read.spss(file=paste0(getwd(),

"/data/protest.sav"),
use.value.labels = F,
to.data.frame = T)

Note that there are several ways to center the variables when creating the in-
teraction term.
# interaction term
# without centering
db$ProtestXSexism1 = db$protest*db$sexism
# with centering
db$ProtestXSexism2 = (db$protest-mean(db$protest)) * (db$sexism-mean(db$sexism))
# z-standardization
# db$ProtestXSexism3 = scale(db$protest)*scale(db$sexism)
# view
head(db)
## sexism liking respappr protest x Sexism_h_t ProtestXSexism1 ProtestXSexism2
## 1 4.25 4.50 5.75 0 4 1 0 0.5914260
## 2 4.62 6.83 5.75 0 6 1 0 0.3390229
## 3 4.62 4.83 5.25 0 4 1 0 0.3390229
## 4 4.37 4.83 4.25 0 5 1 0 0.5095655
## 5 4.25 5.50 2.50 0 3 1 0 0.5914260
## 6 4.00 6.83 4.75 0 3 1 0 0.7619686

120



Now, run the regression model:
# regression model (with centering)
m.cent = lm(liking ~ protest + sexism + ProtestXSexism2, data=db)
summary(m.cent)
##
## Call:
## lm(formula = liking ~ protest + sexism + ProtestXSexism2, data = db)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9894 -0.6381 0.0478 0.7404 2.3650
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.79659 0.58679 8.174 2.83e-13 ***
## protest 0.49262 0.18722 2.631 0.00958 **
## sexism 0.09613 0.11169 0.861 0.39102
## ProtestXSexism2 0.83355 0.24356 3.422 0.00084 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9888 on 125 degrees of freedom
## Multiple R-squared: 0.1335, Adjusted R-squared: 0.1127
## F-statistic: 6.419 on 3 and 125 DF, p-value: 0.0004439

# regression model (without centering)
m.roh = lm(liking ~ protest + sexism + ProtestXSexism1, data=db)
summary(m.roh)
##
## Call:
## lm(formula = liking ~ protest + sexism + ProtestXSexism1, data = db)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9894 -0.6381 0.0478 0.7404 2.3650
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.7062 1.0449 7.375 1.99e-11 ***
## protest -3.7727 1.2541 -3.008 0.00318 **
## sexism -0.4725 0.2038 -2.318 0.02205 *
## ProtestXSexism1 0.8336 0.2436 3.422 0.00084 ***
## ---
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## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9888 on 125 degrees of freedom
## Multiple R-squared: 0.1335, Adjusted R-squared: 0.1127
## F-statistic: 6.419 on 3 and 125 DF, p-value: 0.0004439

How much variance does the model explain? Are there main effects or condi-
tional effects? If yes, what do they look like?

Solution: interpretation

The overall model is significant (p < .001) and explains 13.3% of the
variance. We are allowed to interpret the results of the regression.
There is a significant conditional effect of protest when sexism = 0. It is
not a main effect since interaction is also included.
Protest has an effect on the assessment if the moderator (sexism) has the
value zero (= a medium level, since mean centered)

Is there a moderation effect?
# run the model without the interaction term
m0 = lm(liking ~ protest + sexism, data=db)
# compare the R2
summary(m.cent)$r.squared - summary(m0)$r.squared
## [1] 0.08119242
# get EtaSq
DescTools::EtaSq(m.cent)
## eta.sq eta.sq.part
## protest 0.047991546 0.052478399
## sexism 0.005136019 0.005892326
## ProtestXSexism2 0.081192415 0.085672955

If so, how much variance does this explain and what does this effect mean in
general?

Solution: interpretation

The interaction of protest and sexism perception is significant. There is a
moderation effect.
The effect of the protest on the lawyer’s assessment varies depending on
how strongly the subjects perceive sexism as a problem.
The interaction contributes 8.1% to explaining the variance. The depen-
dent variable is thus better explained if moderation is taken into account.

Illustrate the moderation effect graphically and interpret it. First, we can create
an interaction plot:
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# extract the needed coefficients
intercept.p0 = coefficients(m.roh)[1]
intercept.p1 = coefficients(m.roh)[1] + coefficients(m.roh)[2]
slope.p0 = coefficients(m.roh)[3]
slope.p1 = coefficients(m.roh)[3] + coefficients(m.roh)[4]
# interaction plot
par(mfrow=c(1,1))
farben = c("red","blue")
plot(db$sexism, db$liking, main="Interaction",

col=farben[db$protest+1],pch=16,
xlab="Sexism",ylab="Liking")

abline(intercept.p0,slope.p0,col="red")
abline(intercept.p1,slope.p1,col="blue")
legend("bottomleft",

c("Protest=0","Protest=1"),
col=c("red","blue"),pch=16)
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Second, we can provide a Johnson-Neyman plot:
library(interactions)
m.simplified = lm(liking ~ protest*sexism, data=db)
johnson_neyman(m.simplified,"protest","sexism")
## JOHNSON-NEYMAN INTERVAL
##
## When sexism is OUTSIDE the interval [3.51, 4.98], the slope of protest is p < .05.
##
## Note: The range of observed values of sexism is [2.87, 7.00]
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9.16.2 Exercise 2: protest with a dichotomous moderator
Now, divide the moderator into a dichotomous variable (sexism low vs. high)
with a median split and recalculate the moderation analysis.
# Median split
db$sexism.ms = as.integer(db$sexism>=median(db$sexism))

What changes in the output?
# new model
m3 = lm(liking ~ protest*sexism.ms, data=db)
summary(m3)
##
## Call:
## lm(formula = liking ~ protest * sexism.ms, data = db)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9179 -0.6815 0.1263 0.7963 2.0821
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.6491 0.2125 26.584 < 2e-16 ***
## protest -0.1154 0.2634 -0.438 0.66199
## sexism.ms -0.7312 0.3122 -2.342 0.02074 *
## protest:sexism.ms 1.2090 0.3779 3.199 0.00175 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
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## Residual standard error: 0.9967 on 125 degrees of freedom
## Multiple R-squared: 0.1195, Adjusted R-squared: 0.09839
## F-statistic: 5.656 on 3 and 125 DF, p-value: 0.001148
# get EtaSq
DescTools::EtaSq(m3)
## eta.sq eta.sq.part
## protest 0.043987025 0.047581194
## sexism.ms 0.002000014 0.002266368
## protest:sexism.ms 0.072096985 0.075686621
# get the coeff
meanvalues = tapply(db$liking, list(db$protest,db$sexism.ms),FUN=mean)
meanvalues
## 0 1
## 0 5.649091 4.917895
## 1 5.533659 6.011489

Solution: interpretation

R-square significantly worse (probably due to loss of information during
dichotomization) and the coefficients change slightly.
There are only two Simple Slopes because there are only two moderator
levels. There are no Johnson-Neyman values.

Calculate the moderation analysis again with the variable «x» as the indepen-
dent variable (it measure the lawyer protests to varying degrees on a scale of
1-7) and the metric moderator. What changes in the output?
# new model
m4 = lm(liking ~ x*sexism, data=db)
summary(m4)
##
## Call:
## lm(formula = liking ~ x * sexism, data = db)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0451 -0.6128 0.1029 0.7720 1.6583
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.65856 1.90366 4.548 0.0000126 ***
## x -0.90210 0.45129 -1.999 0.0478 *
## sexism -0.73604 0.36256 -2.030 0.0445 *
## x:sexism 0.21069 0.08563 2.460 0.0152 *
## ---
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## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.009 on 125 degrees of freedom
## Multiple R-squared: 0.09858, Adjusted R-squared: 0.07695
## F-statistic: 4.557 on 3 and 125 DF, p-value: 0.004584
# get EtaSq
DescTools::EtaSq(m4)
## eta.sq eta.sq.part
## x 0.046574596 0.04912969
## sexism 0.006844541 0.00753586
## x:sexism 0.043654300 0.04619148

Solution: interpretation

Now the hypothesis is that the more women believe that sexism is a prob-
lem, the more they like the lawyer, the more she protests.
The coefficients change, the explanation of variance overall and through
the interaction alone is weaker in each case (but this is simply because it
is a completely different and only a simulated variable).

What changes in the graphics?
# plots
johnson_neyman(m4,"x","sexism")
## JOHNSON-NEYMAN INTERVAL
##
## When sexism is OUTSIDE the interval [0.20, 5.01], the slope of x is p < .05.
##
## Note: The range of observed values of sexism is [2.87, 7.00]
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Solution: interpretation

The Johnson-Neyman graph hardly changes. The range of significance
shifts only slightly.
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Chapter 10

Mediation analysis

10.1 Mediation analsyis
Mediation analysis tests a hypothetical causal chain where one variable X affects
a second variable M and, in turn, that variable affects a third variable Y. Me-
diators describe the how or why of a relationship between two other variables.
Mediators describe the process through which an effect occurs. This is also
sometimes called an indirect effect. We therefore have the following properties:

• Total effect of X on Y: c = c’ + ab
• Indirect effect of X on Y: ab
• Direct effect of X on Y after controlling for M: c’ = c - ab

Perfect mediation occurs when the effect of X on Y decreases to 0 with M in
the model.

Partial mediation occurs when the effect of X on Y decreases by a nontrivial
amount (the actual amount is up for debate) with M in the model.
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10.2 Investigation of the direct and indirect ef-
fects

Mediation was previously considered statistically significant if a and b were
significant and c’ was less than c. One calculated c-c’ (difference method) and
regarded a mediation as statistically significant if c was significant and c’ was not.
The mediation was thus validated by a logical conclusion without considering
a*b (the indirect effect) specifically.

However, this approach might not be suitable for the following cases:

• c just significant, c’ just no longer significant: Would be explained as sta-
tistically significant mediation using the difference method, but mediation
explains too little.

• c significant, c’ still significant: Would be explained as insignificant medi-
ation using the difference method, but mediation explains enough, but not
all mediation processes were found (therefore c’ still becomes significant).

• c is not significant: Would be explained as insignificant mediation using
the difference method, but mediation effect is possible if indirect and direct
effects are in opposite directions.

10.3 Significance
In order to be able to speak of mediation, the following must be statistically
reliable: ab not equal 0 (i.e. a not equal to 0 and b not equal to 0!).

To determine the significance of the indirect effect, the indirect effect is backed
up statistically using the so-called Sobel test. Due to unrealistic requirements,
however, it is no longer recommended.

Instead, a bootstrap method (also “resampling method”) is preferred. Empirical
sample is considered as a pseudo-population, and a large number of random
samples (each with replacement) are drawn from this pseudo-population (1000 or
more). The indirect effect is calculated in each case. The result is a distribution
of the indirect effects (which are normally distributed!)

10.4 Two approaches
We will cover two ways to conduct mediation analysis:

• Baron & Kenny’s (1986) 4-step indirect effect method
• mediation package (Tingley et al., 2014)

10.4.1 Method with 4-steps from Baron & Kenny
This method includes 4-steps:
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• estimate the relationship between X on Y (c must be significantly different
from 0)

• estimate the relationship between X on M (a must be significantly different
from 0)

• estimate the relationship between M on Y controlling for X (b must be
significantly different from 0)

• estimate the relationship between Y on X controlling for M (should be
non-significant and nearly 0)

10.4.2 Method with the R mediation package
This package uses the more recent bootstrapping method of Preacher & Hayes
(2004) to address the power limitations of the Sobel test. This method computes
the point estimate of the indirect effect (ab) over a large number of random sam-
ple (typically 1000) so it does not assume that the data are normally distributed
and is especially more suitable for small sample sizes than the Barron & Kenny
method.

This method includes 2-steps:

• estimate the relationship between X on M
• estimate the relationship between X on Y controlling for M

The mediate function gives us our Average Causal Mediation Effects (ACME),
our Average Direct Effects (ADE), our combined indirect and direct effects
(Total Effect), and the ratio of these estimates (Prop. Mediated). The ACME
here is the indirect effect of M (total effect - direct effect) and thus this value
tells us if our mediation effect is significant.

10.5 Inconsistent mediation
In general, complete mediation implies that these step 1-2-3-4 (in the 4-steps
from Baron & Kenny) be met. However, in practice, some researchers also
consider that the essential steps in establishing mediation are steps 2 (X on M)
and 3 (Z on Y, controlling for X).

Furthermore, if c� (direct effect of X on Y after controlling for M) had the
opposite sign to that of ab (indirect effect of X on Y), then there would still be
mediation (even if step 1 could not be met). In this case the mediator acts like
a suppressor variable (see MacKinnon, Fairchild & Fritz, 2007).

For instance, we could have the following model: participation in strikes (or
social demonstrations) and satisfaction with government mediated by media
consumption. Presumably, we have the following relations:

• the direct effect is negative, with more participation in (anti-government)
demonstration(s) suggesting less satisfaction with government
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• however, likely the effect of participation in demonstration(s) on consum-
ing media is positive

• furthermore, the effect of media consumption on satisfaction with govern-
ment is likely to be positive

Thus, we obtain a positive indirect effect, and the total effect of participation
in demonstration(s) on satisfaction with government is likely to be very small
because the direct and indirect effects will tend to cancel each other out.

10.6 Sobel test
Given the above example, it is recommended to perform a single test of ab
(rather than two separated tests of a and b). The test was first proposed by
Sobel (1982). The Sobel test uses the following standard error estimate of ab:

√𝑏2 ∗ 𝑠2𝑎 + 𝑎2 ∗ 𝑠2
𝑏

The test of the indirect effect is given by dividing ab by the above standard
error estimate and treating the ratio as a Z test:

𝑧 = 𝑎𝑏
√𝑏2 ∗ 𝑠2𝑎 + 𝑎2 ∗ 𝑠2

𝑏
.

If a z-score is larger than 1.96 in absolute value, the mediation effect is significant
at the .05 level.

10.7 Bootstraping
The Sobel test is easy to conduct but presumes that a and b are independent
(which may not always be true). Furthermore, it assumes that ab is normally
distributed (which might not work well for small sample sizes).

One solution is to use the bootstrap method (see Bollen & Stine, 1990). This
method has no distribution assumption on the indirect effect ab, but rather
approximates the distribution of ab using its bootstrap distribution.

Using the original data set (Sample size = n) as the population, the model draws
a bootstrap sample of n individuals with paired (Y, X, M) scores randomly from
the data set with replacement. From the bootstrap sample, estimate ab based
on a set of regression models. The steps are repeated for a total of N times
(N=number of bootstraps).
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10.8 Total mediation versus partial mediation
One speaks of total mediation when the direct effect disappears as a result of
mediation: c != 0, and thus ab = c.

One speaks of partial mediation when the direct effect does not disappear as a
result of the mediation, but a residue remains: c!= 0 (i.e. if ab != c).

In the social science context, mediations are mostly partial, because one process
rarely explains the full influence of X on Y.

10.9 Why consider ab instead of c-c’?
The difference method (c-c’) originally assumed that c must be significant (that
is, that the X must have a total effect on the Y, which is to be explained by
mediation).

However, mediation can also exist if c = 0. This is possible because there may
be several significant mediator effects that cancel each other out (but not all
may have been measured).

The targeted examination of ab thus provides a more precise picture of individ-
ual significant mediation processes, even if there is no total effect.

10.10 More recent methodology: lavaan
The R package that handles measurement and analysis models most easily is
lavaan. For the calculation, the model formula and the data are passed to the
sem() function.

The result is a complex object with many methods of its own. The most impor-
tant are: summary(), fitMeasures(), parameterEstimates(), and inspect().

10.11 In a nutshell
A mediation analysis is a regression analysis in which the influence of an inde-
pendent variable (X) on a dependent variable Y is fully or partially explained
by a mediator (M).

The indirect effect via the mediator is formed by multiplying two effects: effect of
X on M and effect of M on Y. The significance of the indirect effect is determined
by bootstrapping.

Significant mediation occurs when the confidence interval for the indirect effect
is not 0.

The size of the effect can be described by the unstandardized or standardized
coefficients.
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A mediation can exist even if there is no significant total effect.

10.12 How it works in R?
See the lecture slides on mediation analysis:

You can also download the PDF of the slides here:

10.13 Quiz
True

False

Statement

Perfect mediation occurs when the relationship between the predictor (X) and
the outcome (Y) is completely wiped out when the mediator (M) is included in
the model.

To measure the effect size of mediation, we rely on the ratio of the indirect to
total effect; mediator accounts for % of shared variance.

The Sobel test works well for small sample sizes.

To test for a mediation effect, we assess the size of the indirect effect and ensure
that the confidence interval does not contains 0.

View Results

My results will appear here

10.14 Example from the literature
The following article relies on moderated mediation as a method of analysis:

Matthes, J. (2013). Do hostile opinion environments harm political participa-
tion? The moderating role of generalized social trust. International Journal of
Public Opinion Research, 25(1), 23-42. Available here.

Please reflect on the following questions:

• What is the research question of the study?
• What are the research hypotheses?
• Is moderated mediation an appropriate method of analysis to answer the

research question?
• What are the main findings of the moderated mediation analysis?
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10.15 Time to practice on your own

You can download the PDF of the exercises here:

10.15.1 Exercise 1: Mediation analysis (using lavaan)
In this exercise, we will use the data “protest.sav” (Hayes, 2022) which can be
downloaded here under “data files and code”. Especially, we will focus on the
following variables:

• Protest (independent variable): A lawyer protests against gender discrim-
ination (experimental group, dichotomous 0 = no and 1 = yes)

• Respappr (mediator): Perceived adequacy of response (scale 1-7)
• Like (dependent variable): assessment of the lawyer (scale 1-7)

Hypothesis: If the lawyer protests, her reaction will be perceived as more ap-
propriate, and therefore the lawyer will be evaluated more favorably.

Start by drawing the regression equations.

Solution: equation

The regression equations go as:

𝑌𝑖 = 𝛽0 + 𝛽1 ∗ 𝑃𝑟𝑜𝑡𝑒𝑠𝑡𝑖 + 𝛽2 ∗ 𝑅𝑒𝑠𝑝𝑎𝑝𝑝𝑟𝑖 + 𝜖𝑖 = 𝑐′ + 𝑏
𝑀𝑖 = 𝛽0 + 𝛽1 ∗ 𝑃𝑟𝑜𝑡𝑒𝑠𝑡𝑖 + 𝜖𝑖 = 𝑎

𝑌𝑖 = 𝛽0 + 𝛽1 ∗ 𝑃𝑟𝑜𝑡𝑒𝑠𝑡𝑖 + 𝜖𝑖 = 𝑐 = 𝑐′ + 𝑎𝑏

Now, we want to calculate the mediation model and to answer the following
questions:

• Is the a-path significant? If so, how much variance does it explain?
• Are the b-path and the c’-path significant? If so, how much variance do

they explain together?
• Is there a total effect of X on Y?
• Is there a significant mediation effect? If so, is there partial or total

mediation?

Start by loading and selecting the data:
# load the data
library(foreign)
db <- read.spss(file=paste0(getwd(),

"/data/protest.sav"),
use.value.labels = F,
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to.data.frame = T)
# get the data
sel <- db |>
dplyr::select(protest, respappr, liking) |>
stats::na.omit()

Now, define the model in laavan and give the results for the c path:
# define the model
modell.c = "liking ~ protest"
# get the complete output
fit.c = lavaan::sem(modell.c, data=sel)
lavaan::parameterestimates(fit.c, standardized=T)[1:8]
## lhs op rhs est se z pvalue ci.lower
## 1 liking ~ protest 0.479 0.193 2.478 0.013 0.100
## 2 liking ~~ liking 1.044 0.130 8.031 0.000 0.789
## 3 protest ~~ protest 0.217 0.000 NA NA 0.217
lavaan::inspect(fit.c,"r2")
## liking
## 0.045
lavaan::fitMeasures(fit.c)[c("chisq","df","aic","cfi","rmsea")]
## chisq df aic cfi rmsea
## 0.0000 0.0000 375.5983 1.0000 0.0000

Solution: Interpretation

The C path is significant and explains 4.5% of the variance of liking. Linear
regression makes sense for this data.

Now get the model for the c’ path:
# define the model
modell.mediation = "
## Direct effect
liking ~ protest
## mediation path
respappr ~ protest
liking ~ respappr
"
# get the complete output
fit.med = lavaan::sem(modell.mediation, data=sel)
lavaan::parameterestimates(fit.med, standardized=T)[1:8]
## lhs op rhs est se z pvalue ci.lower
## 1 liking ~ protest -0.101 0.198 -0.508 0.611 -0.489
## 2 respappr ~ protest 1.440 0.220 6.544 0.000 1.008
## 3 liking ~ respappr 0.402 0.069 5.857 0.000 0.268
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## 4 liking ~~ liking 0.824 0.103 8.031 0.000 0.623
## 5 respappr ~~ respappr 1.354 0.169 8.031 0.000 1.024
## 6 protest ~~ protest 0.217 0.000 NA NA 0.217
lavaan::inspect(fit.med,"r2")
## liking respappr
## 0.246 0.249
lavaan::fitMeasures(fit.med)[c("chisq","df","aic","cfi","rmsea")]
## chisq df aic cfi rmsea
## 0.000 0.000 756.355 1.000 0.000

Solution: Interpretation

The c’ path is not significant, but both a and b are significant and the
variance explained by liking is significantly higher (24.6%) than in the last
model.

The output is a little better understandable if you take the indirect and the
overall effect on Y with the names of the paths:
# define the model
modell.complete = "
## direct effect
liking ~ c*protest
## mediation path
respappr ~ a*protest
liking ~ b*respappr
## indirect effect (a*b)
ab := a*b
## total effect (c+a*b)
total := c+a*b
"
# get the complete output
fit.complete = lavaan::sem(modell.complete, data=sel)
lavaan::parameterestimates(fit.complete, standardized=T)[1:8]
## lhs op rhs label est se z pvalue
## 1 liking ~ protest c -0.101 0.198 -0.508 0.611
## 2 respappr ~ protest a 1.440 0.220 6.544 0.000
## 3 liking ~ respappr b 0.402 0.069 5.857 0.000
## 4 liking ~~ liking 0.824 0.103 8.031 0.000
## 5 respappr ~~ respappr 1.354 0.169 8.031 0.000
## 6 protest ~~ protest 0.217 0.000 NA NA
## 7 ab := a*b ab 0.579 0.133 4.364 0.000
## 8 total := c+a*b total 0.479 0.193 2.478 0.013
lavaan::inspect(fit.complete,"r2")
## liking respappr
## 0.246 0.249
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lavaan::fitMeasures(fit.complete)[c("chisq","df","aic","cfi","rmsea")]
## chisq df aic cfi rmsea
## 0.000 0.000 756.355 1.000 0.000

Give the full interpretation of the model:

Solution: Interpretation

• The indirect effect (ab) of X via the mediator on Y is significant and
positively directed.

• If the lawyer protests, her reaction will be perceived as more appro-
priate than if she does not protest. An appropriate perception of
the reaction then leads to a better assessment of the lawyer.

• The direct effect (c), however, is not significant. Since the indirect
effect is significant at the same time, there is complete mediation.

• The connection between the lawyer’s protesting and the lawyer’s
evaluation is fully mediated by the lawyer’s reaction being perceived
as more appropriate when she protests.

10.15.2 Exercise 2: Moderated mediation analysis (using
lavaan)

In this exercise, we will use the data “protest.sav” (Hayes, 2022) which can be
downloaded here under “data files and code”. Especially, we will focus on the
following variables:

• Protest (independent variable): A lawyer protests against gender discrim-
ination (experimental group, dichotomous 0 = no and 1 = yes)

• Respappr (mediator): Perceived adequacy of response (scale 1-7)
• Like (dependent variable): assessment of the lawyer (scale 1-7)
• Sexism (moderator): perception of sexism as a ubiquitous problem in

society (scale 1-7)

We want to test the assumption that if the lawyer protests, her response will be
judged more appropriate by women who perceive sexism as a problem (moder-
ator: dichotomous variable “sexism”), and therefore the lawyer will be judged
better.

We want to test the following hypothesis: If the lawyer protests against gender
discrimination, her response is perceived as more appropriate and therefore the
lawyer is judged better.

Start by drawing the regression equations.
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Solution: equation

The regression equations go as:

𝑌𝑖 = 𝛽0 + 𝛽1 ∗ 𝑃𝑟𝑜𝑡𝑒𝑠𝑡𝑖 + 𝛽2 ∗ 𝑅𝑒𝑠𝑝𝑎𝑝𝑝𝑟𝑖 + 𝜖𝑖 = 𝑐′ + 𝑏
𝑀𝑖 = 𝛽0 + 𝛽1 ∗ 𝑃𝑟𝑜𝑡𝑒𝑠𝑡𝑖 + 𝛽2 ∗ 𝑆𝑒𝑥𝑖𝑠𝑚𝑖 + 𝛽3 ∗ (𝑃𝑟𝑜𝑡𝑒𝑠𝑡𝑖 ∗ 𝑆𝑒𝑥𝑖𝑠𝑚𝑖)𝜖𝑖 = 𝑎

𝑌𝑖 = 𝛽0 + 𝛽1 ∗ 𝑃𝑟𝑜𝑡𝑒𝑠𝑡𝑖 + 𝜖𝑖 = 𝑐 = 𝑐′ + 𝑎𝑏

Now, we want to calculate the mediation model and to answer to following
questions:

• Is the a-path moderated? How much mediator variance does regression
explain for the overall a-path and how much of that is explained by moder-
ation? Illustrate the moderation of the a-path. What do the results mean
in terms of content?

• Are the b-path and the c’-path significant? If so, how much variance do
they explain together?

Start by loading and selecting the data, and also construct the interaction vari-
able:
# load the data
library(foreign)
db <- read.spss(file=paste0(getwd(),

"/data/protest.sav"),
use.value.labels = F,
to.data.frame = T)

# get the data
sel <- db |>
dplyr::select(protest, respappr, liking, sexism) |>
stats::na.omit()

# construct the interaction variable
sel$protest.sexism = sel$protest*sel$sexism

Now, define the model in laavan:
# define the model
modell.mod = "
liking ~ c*protest ## direct effect
respappr ~ a*protest + sexism + protest.sexism ## moderation/mediation paths
liking ~ b*respappr
protest ~~ sexism ## covariances
protest ~~ protest.sexism
sexism ~~ protest.sexism
respappr ~1 ## Intercepts
liking ~1

138



ab := a*b ## indirect effect
total := c+a*b ## total effect

"
# get the complete output
fit.mod = lavaan::sem(modell.mod, data=sel)
lavaan::parameterestimates(fit.mod, standardized=T)[1:8]
## lhs op rhs label est se z pvalue
## 1 liking ~ protest c -0.101 0.198 -0.508 0.611
## 2 respappr ~ protest a -2.687 1.429 -1.880 0.060
## 3 respappr ~ sexism -0.529 0.232 -2.278 0.023
## 4 respappr ~ protest.sexism 0.810 0.278 2.919 0.004
## 5 liking ~ respappr b 0.402 0.069 5.857 0.000
## 6 protest ~~ sexism 0.015 0.032 0.456 0.648
## 7 protest ~~ protest.sexism 1.114 0.141 7.886 0.000
## 8 sexism ~~ protest.sexism 0.501 0.176 2.846 0.004
## 9 respappr ~1 6.567 1.191 5.516 0.000
## 10 liking ~1 3.747 0.302 12.400 0.000
## 11 liking ~~ liking 0.824 0.103 8.031 0.000
## 12 respappr ~~ respappr 1.269 0.158 8.031 0.000
## 13 protest ~~ protest 0.217 0.027 8.031 0.000
## 14 sexism ~~ sexism 0.610 0.076 8.031 0.000
## 15 protest.sexism ~~ protest.sexism 6.151 0.766 8.031 0.000
## 16 protest ~1 0.682 0.041 16.640 0.000
## 17 sexism ~1 5.117 0.069 74.441 0.000
## 18 protest.sexism ~1 3.505 0.218 16.053 0.000
## 19 ab := a*b ab -1.081 0.604 -1.790 0.073
## 20 total := c+a*b total -1.182 0.664 -1.781 0.075
lavaan::inspect(fit.mod,"r2")
## liking respappr
## 0.246 0.296
lavaan::fitMeasures(fit.mod)[c("chisq","df","aic","cfi","rmsea")]
## chisq df aic cfi rmsea
## 6.5581814 2.0000000 1345.5708600 0.9921174 0.1329187

What do the results mean in terms of content?

Solution: Interpretation

The overall model for the mediator (respappr) significantly explains 29.6%
of the mediator’s variance.
There is a significant conditional effect of the independent variable on the
mediator when the moderator has a value of 0 (= with a moderate level of
sexism, the lawyer’s protest leads to her reaction being perceived as more
appropriate).
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The a-path from the independent variable to the mediator is significantly
moderated by the sexism attitude. This moderation alone explains 4.8%
(0.294-0.246=0.048) of the variance of the mediator.
The extent to which protesting influences the perceived appropriateness
of the reaction thus varies depending on the subjects’ sexism attitude.
However, the strong correlations between the independent variables are
a problem for the model! The standardized coefficients are outside the
natural limits of -1 to +1 and RMSEA has risen above 0.1. The model
represents the data poorly. Moderation is better studied independently of
mediation.

Finally, we want to know whether there is a significant moderated mediation
effect? If so, how can this be described and interpreted in terms of content?

Solution: Interpretation

Interaction is significant: The moderator has an influence on the a-path.
Path ab is not significant: There is not an indirect effect for all values of
the moderator.
RMSEA is too high and there are beta values above 1.0: The data are not
suitable for this evaluation and the estimators cannot be fully trusted.
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Chapter 11

EFA

11.1 Factor analysis: exploratory vs confirma-
tory

In exploratory factor analysis (EFA), all measured variables are related to every
latent variable. It is used to reduce data to a smaller set of summary variables
and to explore the underlying theoretical structure of the phenomena. It asks
what factors are given in observed data and, thereby, requires interpretation of
usefulness of a model (it should be confirmed with confirmatory factor analysis).

In confirmatory factor analysis (CFA), researchers can specify the number of
factors required in the data and which measured variable is related to which
latent variable. It asks how well a proposed model fits a given data. However,
it does not give a definitive answer, but is rather useful to compare models (and
data).

The differences in both approaches can be summarized as follows:
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11.1.1 Prerequisites
Prerequisites of factor analysis include:

• Condition: There are several interval-scaled characteristics (items).
• Rule of thumb: At least 50 people and 3x more people as variables (ideally:

5x more people as variables!).

11.1.2 Dimensionality reduction
Dimensionality reduction transforms a data set from a high-dimensional space
into a low-dimensional space, and can be a good choice when you suspect there
are too many variables which can be a problem because it is difficult to under-
stand (or visualize) data in higher dimensions.

Another potential consequence of having a multitude of predictors is possible
harm to a model. The simplest example is a method like ordinary linear regres-
sion where the number of predictors should be less than the number of data
points used to fit the model.

Another issue is multicollinearity, where between-predictor correlations can neg-
atively impact the mathematical operations used to estimate a model. If there
are an extremely large number of predictors, it is fairly unlikely that there are
an equal number of real underlying effects. Predictors may be measuring the
same latent effect(s), and thus such predictors will be highly correlated.

There are several dimensionality reduction methods that can be used with dif-
ferent types of data for different requirements:

• combinating features:
– linear: Principal component analysis (PCA), Factor analysis (FA),

Multiple correspondence analysis (MCA), Linear discriminant analy-
sis (LDA) or Singular value decomposition (SVD)

– non-linear: Kernel PCA, t-distributed Stochastic Neighbor Embed-
ding (t-SNE) or Multidimensional scaling (MDS)

• keeping most important features: Random forests, Forward or Backward
selection
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11.2 General procedure of EFA
Several steps need to be undertaken to conduct exploratorty factor analysis:

• Setup and evaluate data set
• Choose number of factors to extract
• Extract (and rotate) factors
• Evaluate what you have and possibly repeat the second and third steps
• Interpret and write-up results

There are also general guidelines to follow:

• It is better to select only the variables of interest from the data set.
• As factor analysis (and PCA) does not play well with missing data, it is

better to remove cases that have missing data.
• Remember that factor analysis is designed for continuous data, although

it is possible to include categorical data in a factor analysis.

11.3 Suitability of the data
Only relevant items may be included in the factor analysis. For instance, items
must correlate significantly. Here, Bartlett Test is useful to assess the hypothesis
that the sample came from a population in which the variables are uncorrelated.
It checks whether the correlation matrix is an identity matrix or not:

• H0: The variables are uncorrelated in the population.
• H1: The variables are correlated in the population.

Kaiser-Meyer-Olkin criterion (KMO) and Measure of Sampling Adequacy
(MSA) further test to what extent the variance of one variable is explained by
the other variables. This indicates whether a data set is suitable for a factor
analysis:

• value range 0-1
• values from .8 desirable
• values below .5 unacceptable

11.4 PCA versus EFA
In Principal Component Analysis (PCA) each variable can be fully explained
by a linear combination of r factors:

𝑍𝑖𝑗 = 𝑓𝑖1𝑎1𝑗 + 𝑓𝑖2𝑎2𝑗 + ... + 𝑓𝑖𝑝𝑎𝑝𝑗

where z is the standard variable x.

This approach should be used when data set structuring and data reduction is
the primary goal.
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In Exploratory Factor Analysis (EFA) each variable cannot be fully explained
by a linear combination of r factors: e.g

𝑍𝑖𝑗 = 𝑓𝑖1𝑎1𝑗 + 𝑓𝑖2𝑎2𝑗 + ... + 𝑓𝑖𝑝𝑎𝑝𝑗 + 𝑒𝑗

This apporach should be used when trying to identify latent variables that are
crucial to answering the items.

11.5 Spatial representation
Each of the given vectors (items) can be written exactly using the basis vectors
(factors). The angle between the base vector (factor) and a given vector (item)
is the correlation coefficient between item and factor: the factor loading.

Fundamental theorem: every observed value of a variable 𝑥𝑗 can be described
as a linear combination of several (hypothetical) factors (𝑓𝑗𝑛). That means that
the answer to an item can be traced back to the sum of the factor values (𝑓𝑗𝑛),
which are weighted with the factor loadings (𝑎𝑗𝑛).

11.6 Extraction of the factors
To extract the factors, we can z-standardize all variables (mean = 0, standard
deviation = 1, variance = 1). The factor that explains the variance of all
variables (𝑥1 to 𝑥𝑗) at most is searched for step by step. Then - similar to
multiple regression - a linear combination of the items is formed:

𝐹1 = 𝑏11𝑥1 + 𝑏12𝑥2 + ... + 𝑏1𝑗𝑥𝑗

To measure the explanation of the variance of a variable, the coefficient of deter-
mination represents the square of the factor loading (see 𝑅2 in the regression).
The first factor is the z-standardized variable for which the sum of the determi-
nation coefficients is maximum.

11.7 Decision about the number of factors
There are 4 decision aids to decide about the number of factors:

• Kaiser criterion: significant factor explains more variance than any of the
original variables and this criterion is fulfilled from an eigenvalue of 1
onwards

• Scree plot: eigenvalues are plotted in the graphic and the factors that lie
above a “threshold” are extracted

• Content plausibility: so many factors are accepted that a plausible inter-
pretation results

144



• A priori criterion: it is theoretically determined in advance how many
factors there should be

11.8 Factor rotation
By rotation one obtains simple structure, the factor interpretation is relieved.
There are 2(3) types of rotation:

• Varimax (Right Angle): the factor axes remain at right angles, so that
they are uncorrelated

• Oblique: the factor axes do not remain at right angles, so that they are
correlated

• Combination (first right angles and then oblique)

Which form of factor rotation is chosen in a specific case often depends on the
theory behind it:

• In the case of orthogonal rotations, the results are easier to interpret be-
cause the factors are uncorrelated.

• Orthogonal rotations are usually also appropriate for pure dimension re-
duction.

However, orthogonal models often do not do justice to the underlying relation-
ships:

• The assumption of zero correlation between the factors is often too strict
and does not reflect the complexity of the data.

• If highly correlated factors are assumed in the data, an oblique rotation
appears to make more sense than an orthogonal one.
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11.9 Interpretation and naming
Factor interpretation is based on the factor loadings. Loadings from .5 are
usually interpreted. Ideally, variables load exactly high on one factor and low
on another.

For factor naming, variables with higher loadings should be given more consid-
eration. A negative charge does not mean that the item does not belong to the
factor. However, the sign must be taken into account in the interpretation.

Possible problems:

• Loading several variables on several factors poses interpretation difficulties
• Negative factor, or one-item factor

11.10 Lexicon
• Factor: latent dimension “behind” the variables, which is responsible for

the manifestation of a directly measured variable
• Component: Collection of variables that have things in common
• Indicator (Item): a directly measured variable that, together with other

variables, makes up a component/factor
• Factor loading: Correlation between a variable and a factor (should be >

.5 on one factor and preferably <.3 on other factors)
• Squared factor loadings: indicates the proportion of variance (=determi-

nation coefficient) of the variable that is explained by the factor
• Eigenvalue of the factor: proportion of the variance of all directly mea-

sured variables that is explained by a factor (=sum of the squared factor
loadings [column by column]). For a factor to be relevant enough to be
extracted, its eigenvalue should be > 1

• Commonality of a variable: proportion of the variance of an item that
is explained by all factors (= sum of the squared factor loadings [row by
row])

• Factor value: calculated value based on the observed values on the mea-
sured variables and the factor loading of the variable on the factor

• Rotation: optimization of the factor solution, perpendicular (orthogonal)
vs oblique rotation

11.11 How it works in R?
See the lecture slides exploratory factor analysis:

You can also download the PDF of the slides here:
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11.12 Quiz
True

False

Statement

The larger the model chi-square test statistic, the larger the residual covariance.

Both in EFA and CFA we specify the pattern of indicator-factor loadings.

In CFA measurement error of indicators is removed during the estimation.

Kaiser’s criterion and scree plot are alternative methods for determining how
many factors to retain.

View Results

My results will appear here

11.13 Example from the literature
The following article relies on EFA as a method of analysis:

Schulz, A., Müller, P., Schemer, C., Wirz, D. S., Wettstein, M., & Wirth, W.
(2018). Measuring populist attitudes on three dimensions. International Journal
of Public Opinion Research, 30(2), 316-326. Available here.

Please reflect on the following questions:

• What is the research question of the study?
• What are the research hypotheses?
• Is EFA an appropriate method of analysis to answer the research question?
• What are the main findings of the EFA?

11.14 Time to practice on your own

You can download the PDF of the EFA exercises here:

11.14.1 Exercise 1: Big-5
To illustrate EFA, let us use the International Personality Item Pool data avail-
able in the psych package. It includes 25 personality self report items following
the big 5 personality structure.

The first step is to test if the dataset is suitable for conducting factor analysis.
To do so, run the Bartlett’s Test of Sphericity and the Kaiser Meyer Olkin
(KMO) measure.
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Reminder: Bartlett’s Test of Sphericity tests whether a matrix (of correlations)
is significantly different from an identity matrix (probability that the correlation
matrix has significant correlations among at least some of the variables in a
dataset). KMO measure indicates the degree to which each variable in a set is
predicted without error by the other variables (a KMO value close to 1 indicates
that the sum of partial correlations is not large relative to the sum of correlations
and so factor analysis should yield distinct and reliable factors).
# load the data
data <- psych::bfi[, 1:25] # 25 first columns corresponding to the items
data <- na.omit(data)
# option 1: check suitability
psych::KMO(data)
## Kaiser-Meyer-Olkin factor adequacy
## Call: psych::KMO(r = data)
## Overall MSA = 0.85
## MSA for each item =
## A1 A2 A3 A4 A5 C1 C2 C3 C4 C5 E1 E2 E3 E4 E5 N1 N2 N3
## 0.75 0.84 0.87 0.88 0.90 0.84 0.80 0.85 0.83 0.86 0.84 0.88 0.90 0.88 0.89 0.78 0.78 0.86
## N4 N5 O1 O2 O3 O4 O5
## 0.89 0.86 0.86 0.78 0.84 0.77 0.76
bartlett = psych::cortest.bartlett(data)
## R was not square, finding R from data
print(paste0("Chi-2: ", round(bartlett[["chisq"]],2),

"; p-value: ", bartlett[["p.value"]]))
## [1] "Chi-2: 18146.07; p-value: 0"
# option 2: check suitability
# performance::check_factorstructure(data)

Once you are confident that the dataset is appropriate for factor analysis, you
can explore a factor structure made of 5 (theoretically motivated) latent vari-
ables. Start by defining the model.
# optional: eigenvalues
ev <- eigen(cor(data))
print(ev$values)
## [1] 5.1343112 2.7518867 2.1427020 1.8523276 1.5481628 1.0735825 0.8395389 0.7992062
## [9] 0.7189892 0.6880888 0.6763734 0.6517998 0.6232530 0.5965628 0.5630908 0.5433053
## [17] 0.5145175 0.4945031 0.4826395 0.4489210 0.4233661 0.4006715 0.3878045 0.3818568
## [25] 0.2625390
psych::scree(data, pc=FALSE)
# fit an EFA
efa <- psych::fa(data, nfactors = 5, rotate="oblimin")
## Le chargement a nécessité le package : GPArotation
efa_para <- psych::fa(data, nfactors = 5, rotate="oblimin") |>
parameters::model_parameters(sort = TRUE, threshold = "max")

efa_para
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## # Rotated loadings from Factor Analysis (oblimin-rotation)
##
## Variable | MR2 | MR1 | MR3 | MR5 | MR4 | Complexity | Uniqueness
## -------------------------------------------------------------------------
## N1 | 0.83 | | | | | 1.07 | 0.32
## N2 | 0.78 | | | | | 1.03 | 0.39
## N3 | 0.70 | | | | | 1.08 | 0.46
## N5 | 0.48 | | | | | 2.00 | 0.65
## N4 | 0.47 | | | | | 2.33 | 0.49
## E2 | | 0.67 | | | | 1.08 | 0.45
## E4 | | -0.59 | | | | 1.52 | 0.46
## E1 | | 0.55 | | | | 1.22 | 0.65
## E5 | | -0.42 | | | | 2.68 | 0.59
## E3 | | -0.41 | | | | 2.65 | 0.56
## C2 | | | 0.67 | | | 1.18 | 0.55
## C4 | | | -0.64 | | | 1.13 | 0.52
## C3 | | | 0.57 | | | 1.10 | 0.68
## C5 | | | -0.56 | | | 1.41 | 0.56
## C1 | | | 0.55 | | | 1.20 | 0.65
## A3 | | | | 0.68 | | 1.06 | 0.46
## A2 | | | | 0.66 | | 1.03 | 0.54
## A5 | | | | 0.54 | | 1.48 | 0.53
## A4 | | | | 0.45 | | 1.74 | 0.70
## A1 | | | | -0.44 | | 1.88 | 0.80
## O3 | | | | | 0.62 | 1.16 | 0.53
## O5 | | | | | -0.54 | 1.21 | 0.70
## O1 | | | | | 0.52 | 1.10 | 0.68
## O2 | | | | | -0.47 | 1.68 | 0.73
## O4 | | | | | 0.36 | 2.65 | 0.75
##
## The 5 latent factors (oblimin rotation) accounted for 42.36% of the total variance of the original data (MR2 = 10.31%, MR1 = 8.83%, MR3 = 8.39%, MR5 = 8.29%, MR4 = 6.55%).
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What do you see? How can you interpret the output?

Solution: Interpretation

The 25 items spread on the 5 latent factors nicely - the famous big 5.

It is possible to visualize the results to ease the interpretation:
loads <- efa$loadings
psych::fa.diagram(loads)

Factor Analysis
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Based on this model, you could predict back the scores for each individual for
these new variables. This could be useful for further analysis (e.g. regression
analysis).

Tips: use the function predict() and give labels to the latent factors. Based on
this model, you could predict back the scores for each individual for these new
variables. This could be useful for further analysis (e.g. regression analysis).

Tips: use the function predict() and give labels to the latent factors.
# predictions <- predict(
# efa_para,
# names = c("Neuroticism", "Conscientiousness", "Extraversion", "Agreeableness", "Opennness"),
# verbose = FALSE
# )
# head(predictions)
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11.14.2 Exercise 2: Environmental concerns
We will use survey data from the World Values Survey (WVS) website to inves-
tigate human belief and values, especially about environmental (EC) We will
analyse Swiss data derived from the much larger WVS cross-country database
(2007). The data can be downloaded here.

EC has been measured by a set of 8 items on a four-step Likert Scale. These
items are thought to load on three different facets of EC: concerns about one’s
own community (water quality, air quality and sanitation), concerns about the
world at large (fears about global warming, loss of biodiversity and ocean pol-
lution), willingness to pay/do more. We want to answer the following question:
Is the three-factor model proposed by the structure of items (or can we assume
a one-factor structure)?

Let’s first prepare the data and get the table of correlations:
db <- openxlsx::read.xlsx(paste0(getwd(),

"/data/WV5_Data_Switzerland_Excel_v20201117.xlsx"))
colnames(db) <- gsub(":.*","",colnames(db))
sel <- db |>
dplyr::select(V108,V109,V110,

V111,V112,V113,
V106,V107
) |>

dplyr::rename("water"="V108",
"air"="V109",
"sanitation"="V110",
"warming"="V111",
"biodiv"="V112",
"pollution"="V113",
"taxes"="V106",
"gov"="V107") |>

stats::na.omit()
sel = replace(sel, sel==-1, NA)
sel = sel[complete.cases(sel),]
# reverse scale
for(i in 1:ncol(sel)){sel[,i] <- (sel[,i]-5)*(-1)}
# correlation
round(cor(sel),2)
## water air sanitation warming biodiv pollution taxes gov
## water 1.00 0.73 0.84 0.04 0.06 0.10 0.00 0.09
## air 0.73 1.00 0.74 0.14 0.14 0.15 0.07 0.03
## sanitation 0.84 0.74 1.00 0.06 0.08 0.12 0.00 0.11
## warming 0.04 0.14 0.06 1.00 0.49 0.39 0.20 0.01
## biodiv 0.06 0.14 0.08 0.49 1.00 0.45 0.13 0.09
## pollution 0.10 0.15 0.12 0.39 0.45 1.00 0.14 0.00
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## taxes 0.00 0.07 0.00 0.20 0.13 0.14 1.00 -0.23
## gov 0.09 0.03 0.11 0.01 0.09 0.00 -0.23 1.00

The first step is to test if the dataset is suitable for conducting factor analysis.
To do so, run the Bartlett’s Test of Sphericity and the Kaiser Meyer Olkin
(KMO) measure.
# option 1: check suitability
psych::KMO(sel)
## Kaiser-Meyer-Olkin factor adequacy
## Call: psych::KMO(r = sel)
## Overall MSA = 0.72
## MSA for each item =
## water air sanitation warming biodiv pollution taxes gov
## 0.71 0.84 0.70 0.69 0.66 0.74 0.62 0.50
bartlett = psych::cortest.bartlett(sel)
## R was not square, finding R from data
print(paste0("Chi-2: ", round(bartlett[["chisq"]],2),

"; p-value: ", bartlett[["p.value"]]))
## [1] "Chi-2: 3331.64; p-value: 0"
# option 2: check suitability
# performance::check_factorstructure(sel)

Now, you can explore a factor structure made of 3 (theoretically motivated)
latent variables. Start by defining the model.
# optional: eigenvalues
ev <- eigen(cor(sel))
print(ev$values)
## [1] 2.6757147 1.8568003 1.2061976 0.7281643 0.6039547 0.4827758 0.2920477 0.1543450
psych::scree(sel, pc=FALSE)
# fit an EFA
efa <- psych::fa(sel, nfactors = 3, rotate="oblimin")
efa_para <- psych::fa(sel, nfactors = 3, rotate="oblimin") |>
parameters::model_parameters(sort = TRUE, threshold = "max")

efa_para
## # Rotated loadings from Factor Analysis (oblimin-rotation)
##
## Variable | MR1 | MR2 | MR3 | Complexity | Uniqueness
## ----------------------------------------------------------
## sanitation | 0.93 | | | 1.01 | 0.14
## water | 0.92 | | | 1.00 | 0.17
## air | 0.79 | | | 1.04 | 0.34
## biodiv | | 0.79 | | 1.02 | 0.40
## warming | | 0.64 | | 1.05 | 0.56
## pollution | | 0.57 | | 1.04 | 0.65
## gov | | | -0.53 | 1.14 | 0.72
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## taxes | | | 0.48 | 1.20 | 0.73
##
## The 3 latent factors (oblimin rotation) accounted for 53.70% of the total variance of the original data (MR1 = 29.23%, MR2 = 17.66%, MR3 = 6.81%).
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What do you see? How can you interpret the output?

Solution: Interpretation

The 8 items spread on the 3 latent factors nicely. Note that the ‘gov’ item
has a negative loading.

It is possible to visualize the results to ease the interpretation:
loads <- efa$loadings
psych::fa.diagram(loads)
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Chapter 12

CFA

12.1 Confirmatory factor analysis
CFA is a model-data fit test based on multivariate regression. Outputs are
coefficients of paths and fit indices. If the paths are significant and indices
indicate acceptable or high degree of fit, that means the structural model is
confirmed by data.

12.1.1 Reminder: latent constructs
Latent constructs are not “directly” measurable (e.g. media usage motives, me-
dia or brand ratings, attitudes, emotions and empathy in the media reception,
trust, etc.).

Furthermore, definitions can be understood differently or terms are completely
unknown. Some concepts also have several dimensions/facets, so that one ques-
tion alone is not enough to fully understand the concept.

Therefore, we should ensure several “indicator variables” that allow conclusions
to be drawn about the latent variable.

12.1.2 Reminder: fundamental theorem
Like the EFA, the CFA is also based on the fundamental theorem of factor
analysis:

𝑥𝑖𝑗 = 𝑎𝑗1𝑓𝑗1 + 𝑎𝑗2𝑓𝑗2 + ... + 𝑎𝑗𝑛𝑓𝑗𝑛

with n factors.

• 𝑥𝑖𝑗 = value of person i on observed variable j
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• 𝑎𝑗1 factor loading = correlation of a variable j and factor 1
• 𝑓𝑖1 = factor value of person i on factor 1

Based on a given (hypothesized) relationship structure between indicator vari-
ables and factors (i.e. whether a correlation is assumed or not), to estimate
the factor loadings in such a way that the empirical value covariance structure
between items can be reproduced as well as possible with their help.

It is about a comparison (better: an adjustment) between empirically found cor-
relations between indicators and the theoretically assumed correlations between
factors and items.

12.1.3 Recap: EFA versus CFA
In EFA:

• the number of factors is searched for exploratively with the help of more
or less fixed criteria (Kaiser criterion, scree plot, content plausibility).

• the assignment of the indicators to the construct is exploratory (via the
factor loadings and the rotation).

• all variables load on all factors

In CFA:

• the number of factors is determined a priori.
• the indicators are assigned to the construct on the basis of theoretical

considerations.
• all aspects of the factor model must be specified in advance: number

of factors, relationship patterns between items and factors and between
factors, etc.

Thus, CFA is one of the structure-testing methods of multivariate data analysis.
Its central goal is testing of measurement models for hypothetical construct.

12.1.4 Concrete research applications
CFA enables us to tackle research questions such as:

• Is the assumed factor structure confirmed?
• Does my theoretically specified measurement model match my data?
• Is there a good fit between the theoretical model and the empirical model?
• What is the quality of “competing” measurement models?
• Do my data confirm the assumed dimensionality of my construct?
• Do my data confirm the assumed hierarchy of my construct?
• Can I use the same measuring instrument in different groups (e.g. coun-

tries)?
• Etc…
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12.2 Requirements of CFA
Mathematical requirements:

• There are several interval-scaled characteristics (items), each of which is
(roughly) normally distributed.

• Items that should theoretically load on a factor should correlate empiri-
cally (if not, they are probably not determined by the same factor)

• Sufficient directly measured variables (items) must be available in order to
be able to test the assumed model structure made up of items and factors
(model identification, more on this later)

Theoretical assumptions:

• Theoretical or at least “logical” justification for the previously expected
model structure made up of items and factors

• Reflective measurement model

Recommendation: It is best to have an EFA before the CFA - either with the
same or with a different sample.

To this end, the theoretical/latent construct is first precisely defined: describe
exactly which aspects a theoretical term contains. Then indicators for the latent
construct are developed (item formulation). These should depict the theoretical
construct (or its individual dimensions) as precisely as possible. Indicators
themselves should correlate with one another, since they depend on the same
hypothetical construct (reflective models!).

12.3 Model structure
The problem of identifying models describes the question of whether a system
of equations can be solved mathematically. The model parameters (free param-
eters) must be estimated from the empirical variances and covariances of the
manifest variables.

Accordingly, all parameters to be estimated in the model (factor loadings, error
terms and, if applicable, permitted correlations between latent variables) must
be calculable/representable with the help of empirical parameters.

If this is the case, then the model is identified. If this is not the case, there
is (so to speak) an equation with too many unknowns. Such an equation is
“unsolvable”, or such a model is “unidentified”. It is about determining the
degrees of freedom of the model.
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The identification of the model structure consists of two “tasks”:

• defining a metric for the latent constructs
• checking whether there is enough information to estimate the model

Both steps influence the number of degrees of freedom of the model. This aspect
also relates to the complexity of the model. The more complex a model is, the
more parameters have to be estimated, and the greater the model’s degrees of
freedom must be in order to make the estimation possible.

12.4 Identification of a three-item one-factor
CFA

Identification for the one-factor CFA with three items is necessary. The total
parameters include 3 factor loadings, 3 residual variances and 1 factor variance
(which comes from the fact that we do not observe the factor but are estimating
its variance).
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In order to identify a factor in a CFA model with three or more items, there
are two options known respectively as the marker method and the variance
standardization method:

• marker method fixes the first loading of each factor to 1, where the model-
implied covariance matrix is as follows:

𝜓11
⎛⎜
⎝

1
𝜆2
𝜆3

⎞⎟
⎠

(1 𝜆2 𝜆3) + ⎛⎜
⎝

𝜃11 0 0
0 𝜃22 0
0 0 𝜃33

⎞⎟
⎠

• variance standardization method fixes the variance of each factor to 1 but
freely estimates all loadings, where the model-implied covariance matrix
is as follows:

1 ⎛⎜
⎝

𝜆1
𝜆2
𝜆3

⎞⎟
⎠

(𝜆1 𝜆2 𝜆3) + ⎛⎜
⎝

𝜃11 0 0
0 𝜃22 0
0 0 𝜃33

⎞⎟
⎠

Notice in both models that the residual covariances stay freely estimated.

By fixing 𝜆1 = 1 and by setting the unique residual covariances to zero
(e.g. 𝜃12 = 𝜃21 = 𝜃13 = 𝜃31 = 𝜃23 = 𝜃32 = 0), we can demonstrate that we ob-
tain a just-identified model. Indeed, we start with 10 total (unique) parameters,
but we fix 1 loading, and 3 unique residual covariances (resulting in 4 fixed
parameters). Furthermore, the number of known values is (3(3 + 1))/2 = 6.
Thus, the number of free parameters is 10-4=6. Since we have 6 known values,
our degrees of freedom is 6-6=0, which is defined to be saturated. This is
known as the marker method.

Similarly, we can go through the process of calculating the degrees of freedom
for the variance standardization method. We also start with 10 total (unique)
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parameters, but we fix 1 factor variance, and 3 unique residual covariances
(resulting in 4 fixed parameters). Furthermore, the number of known values is
(3(3 + 1))/2 = 6. Thus, the number of free parameters is 10-4=6. Since we
have 6 known values, our degrees of freedom is 6-6=0, which is defined to be
saturated.

Degree of freedom: calculation

The formula for calculation degrees of freedom is as follows:

𝑑𝑓 = 𝑚(𝑚 + 1)
2 − 2𝑚 − 𝑋(𝑋 − 1)

2
where 𝑚 represent the number of indicators and 𝑋 the number of inde-
pendent latent constructs. We can differentiate between different parts:

• 𝑚(𝑚+1)
2 gives us the maximum degree of freedom in the model

• 2𝑚 specifies the number of parameters to be estimated
• 𝑋(𝑋−1)

2 represents the free off-diagonal covariances of the constructs
In the above example, we have 8 indicators (𝑚) and 2 latent constructs
(𝑋). Applying the formula, we obtain:

𝑑𝑓 = 8(9)
2 − 16 − 2(1)

2 = 19

12.5 Types of parameters
Fixed parameters:

• Parameters that are assigned a specific constant value a priori.
• Mostly when it is assumed on the basis of theoretical considerations that

there are no causal relationships between certain variables, the correspond-
ing parameters are set to zero

• However, a value greater than zero can also be specified, to which a pa-
rameter is then fixed, for example if the exact stronger of a relationship
between two variables is already known in advance

Constrained parameters:

• Parameters that should be estimated in the model, but whose value should
correspond exactly to the value of one or more other parameters.

• E.g. if the influence of two independent variables on a dependent variable
is considered to be equal.

• If two parameters are defined as restricted, only one parameter has to be
estimated instead of two.

Free parameters:

• All other parameters whose values are considered unknown and should be
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estimated from the empirical data.

12.6 Defining a metric for the latent constructs
The latent variables and error variables to be estimated initially have no metric.
In order to be able to interpret the variable later, a scale must be assigned.

To do so, you can choose a reference variable and fix the factor loading to 1. With
regard to the latent variable, the best indicator variable should be selected. It
then means that the latent variable is identical to the selected indicator variable
except for the measurement error. In addition, all relationships between the
measurement error terms to be estimated and the measured indicator variables
are fixed at 1. It then means that the measurement errors to be estimated
correspond to the observed values, except for the influence of the latent variables.

12.7 Checking whether there is enough informa-
tion to estimate the model

If n manifest variables are collected within the framework of a project, then the
empirical variances and covariances of these variables can be calculated:

𝑝 = 𝑛(𝑛 + 1)
2

where p corresponds to the number of non-redundant values in the variance-
covariance matrix (it thus corresponds to the available “information” that we
use as the basis for calculating all free parameters of our model).

The difference between the available empirical information (p) and the number
of (free) parameters to be estimated (q) gives the degrees of freedom of the
model (𝑑𝑓𝑀):

𝑑𝑓𝑀 = 𝑝 − 𝑞

where p is the number of empirical information available from the n empirical
indicators) and q corresponds to the number of free parameters to be estimated
in each case.

If the empirically available information is the same as the number of parameters
to be estimated, the number of model degrees of freedom corresponds to zero.
The number of model parameters to be estimated must not exceed the number
of empirical information given, otherwise a model is not identified (i.e., not
solvable). Furthermore, the degrees of freedom of the model must be superior
or equal to 0 for a specified model to be identified.
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In the following example, the model is under-identified (df < 0): the information
available from the empirical data is not sufficient to calculate the parameters.

What about the next example?

Is the model under- or over-identified?

A positive number of degrees of freedom is necessary for the solvability of
SEM/CFA! For empirical surveys, ensure that at least as many indicator
variables are surveyed as are necessary to achieve a positive number of
degrees of freedom. In the example above:

𝑝 = (4(4 + 1))/2 = (4 ∗ 5)/2 = 10
𝑞 = 9

𝑑𝑓𝑀 = 𝑝 − 𝑞 = 10 − 9 = 1
Thus, the model is over-identified.

12.8 Parameters determination
The CFA first calculates the empirical variance-covariance matrix (in short: co-
variance matrix) with the collected data (= empirical relationships in the data).
Based on the defined measurement model, the model-theoretical covariance ma-
trix is calculated (= expected relationships in the data).

The covariance matrix should be reproduced as accurately as possible by the
model. This means that the model-theoretical covariance matrix should resem-
ble the empirical covariance matrix as closely as possible.

The better it is possible to reproduce the empirical covariance matrix with the
model-theoretical covariance matrix, the more reliable the parameter estimates
are and the better the model is.

To assess the model quality so-called fit-indices/fit-measures describe how good
the model is.
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Exactly one solution is possible for exactly identified models, several solutions
are possible for over-identified models, the best solution must be found. The
solution is improved with each (iterative) step by improving the fit of the model
(i.e. the fit of the model to the empirical data/the empirical covariance matrix).
In other words, the difference between the empirical and model-theoretical co-
variance matrix should be minimal.

The parameters can actually be estimated using various functions. The most
common method is the so-called Maximum Likelihood (ML) method. Here the
estimated parameter is selected that is most likely to reproduce the observed
data. This method assumes metric data.

12.9 Checking the quality
Once a solution has been found, it must be checked for quality. The reliability
and validity of the measurement must therefore be assessed.

• Reliability: Repeated measurements must always produce the same result
(items must all show a high loading with the latent construct)

• Validity: the measuring instrument should measure what it is supposed
to measure

The assessment of the results follows a multi-stage process:

• Checking at indicator level
• Construct level testing
• Examination on model level

Concerning the examination at indicator level (items), we must ensure that only
“good” indicators are included in a model. Thus, there should be sufficiently high
correlations between the items (e.g. EFA, Cronbach’s Alpha, etc). Furthermore,
the plausibility of the factor loadings, the significance of the factor loadings, and
the strength of the factor loadings (and of the squared factor loadings) should
be determined.

• Standardized solution corresponds to factor loadings (to be interpreted as
in EFA, values >.5 are desirable)

• Squared factor loadings indicate the percent variance of a variable that is
explained by the factor behind it (should reach at least .3)

At the construct level (factors), the question is answered as to whether the con-
structs/factors are reliably and validly measured (e.g. factor reliability, average
extracted variance of the factors, and discriminant validity).

• Factor reliability (should be > .5)
• Average extracted variance of factors (DEV, should be > .5)
• Discriminant validity (Fornell/Larcker criterion)

– DEV > squared correlation of the constructs (=common variance of
the factors)
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– Measure for the fact that the explanation of the variance of the factors
on the indicators is greater than the connection between the factors

The examination at model level (overall model) suggests to check whether the
empirical variance-covariance matrix is reproduced as well as possible by the
model-theoretical variance-covariance matrix (e.g. Fit-indices, Chi-Square test
statistic, RMSEA and SRMR).

• Chi-Square Test (H0: empirical covariance matrix = model-theoretical
covariance matrix)

– The smaller the difference between the two matrices, the smaller the
chi-square value (the smaller the chi-square, the better).

– The test should not turn out to be significant, since equality between
the empirical and model-theoretical variance-covariance matrix is de-
sirable.

Recommendations for model model evaluation

The original table from Schermelleh-Engel et al. (2003) can be found here.

12.10 Model Chi-square
The model chi-square is defined as either 𝑛𝐹𝑀𝐿 or (𝑛 − 1)𝐹𝑀𝐿 depending on
the statistical package where 𝑛 is the sample size and 𝐹𝑀𝐿 is the fit function
from maximum likelihood.

The model chi-square is a meaningful test only when you have an over-identified
model (there are still degrees of freedom left over after accounting for all the
free parameters in your model).
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Note on the sample size

Model chi-square is sensitive to large sample sizes. So how big of a sample
do we need? Kline (2016) notes the 𝑁 ∶ 𝑞 rule, which states that the
sample size should be determined by the number of 𝑞 parameters in your
model, and the recommended ratio is 20 ∶ 1. This means that if you have
10 parameters, you should have n=200.
Reference: Kline, R. B. (2016). Principles and Practice of Structural
Equation Modelling, 4th edn. New York. NY: The Guilford Press.

12.11 Baseline model
The model test baseline is also known as the null model, where all covariances
are set to zero and freely estimates variances. Rather than estimate the factor
loadings, we only estimate the observed means and variances (removing all the
covariances). Recall that we have 𝑝(𝑝+1)

2 covariances. Since we are only estimat-
ing the 𝑝 variances we have 𝑝(𝑝+1)

2 − 𝑝 degrees of freedom. You can think of
the baseline (or null) model as the worst model you can come up with and the
saturated model as the best model. Theoretically, the baseline model is useful
for understanding how other fit indices are calculated.

12.12 Approximate fit indexes
To resolve the problem related to the Chi-square sensitivity under large samples,
approximate fit indexes that are not based on accepting or rejecting the null
hypothesis were developed. These approximate fit indexes can be classified
into:

• incremental or relative fit indexes (e.g. CFI and TLI): assesses the ratio
of the deviation of the user model from the baseline model against the
deviation of the saturated model (best fitting model) from the baseline
model
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• absolute fit indexes (e.g. RMSEA): compares the user model to the ob-
served data

12.12.1 CFI and TLI
The CFI or comparative fit index is a popular fit index as a supplement to the
model chi-square. Let 𝛿 = 𝜒2 − 𝑑𝑓 where 𝑑𝑓 is the degrees of freedom for that
particular model. The closer 𝛿 is to zero, the more the model fits the data. The
formula for the CFI is:

𝐶𝐹𝐼 = 𝛿(𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒) − 𝛿(𝑈𝑠𝑒𝑟)
𝛿(𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

TLI is also an incremental fit index. The term used in the TFI is the relative chi-
square (a.k.a. normed chi-square) defined as 𝜒2/𝑑𝑓 . Compared to the model chi-
square, relative chi-square is less sensitive to sample size. Whereas 𝜒2/𝑑𝑓 = 1
indicates perfect fit, some researchers say that a relative chi-square greater than
2 indicates poor fit. The TLI is defined as:

𝑇 𝐿𝐼 = 𝑚𝑖𝑛(𝜒2
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒/𝑑𝑓𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒, 1) − 𝑚𝑖𝑛(𝜒2

𝑈𝑠𝑒𝑟/𝑑𝑓𝑈𝑠𝑒𝑟, 1)
𝑚𝑖𝑛(𝜒2

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒/𝑑𝑓𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒, 1) − 1

Acceptable range of Chi-square values

Suppose you ran a CFA with 20 degrees of freedom. What would be the
acceptable range of chi-square values based on the criteria that the relative
chi-square greater than 2 indicates poor fit?
The range of acceptable chi-square values ranges between 20 (indicating
perfect fit) and 40, since 40/20 = 2.

12.12.2 RMSEA
RMSEA (Root Mean Squared Error of Approximation):

• This measure uses inferential statistics to check whether a model can ap-
proximate reality well (= approximation test).

• It is therefore not about the absolute correctness of the model, as with the
Chi-Square test, but about evaluating the best possible approximation.

• The measure also includes the model complexity.

𝑅𝑀𝑆𝐸𝐴 = √ 𝛿
𝑑𝑓(𝑛 − 1) = √ 𝜒2 − 𝑑𝑓

𝑑𝑓(𝑛 − 1)

Recommendations:
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• RMSEA � .05 good fit
• RMSEA � .08 acceptable fit

SRMR (Standardized Root Mean Squared Residual):

• Usually there is a discrepancy between the empirical and model-
theoretical covariance matrix. Therefore, descriptive measures of
discrepancy are often used.

• These give an answer to the question of whether an existing discrep-
ancy can be neglected and also includes the model complexity.

• If the empirical and model-theoretical covariance matrix are com-
pletely identical, this measure assumes a value of zero.

Recommendations:
• SRMR � .05 good fit
• SRMR � .10 more acceptable

12.13 In case of bad model fit
There are several things we can do if the model fit is too bad:

• View Modification indices (MI) and adjust model if necessary
• MI indicate how the model fit can be improved (e.g. how the theoretical

model can better approximate the empirical data)
• MI usually propose to release certain fixed parameters
• Many MI proposals do not necessarily make sense with regard to the

theoretical assumptions (find a balance between mathematical fit and the-
oretical meaning)

12.14 Comparison of different models
Comparing different models can be useful when we have competing theoretical
models.

Comparison rules:

• lower RMSEA = descriptively better model
• lower SRMR = descriptively better model
• larger CFI = descriptively better model
• smaller AIC = descriptively better model

Statistically verified comparisons between competing models only possible with
nested models (= models are exactly identical except that one path is more/less
estimated).

To do so, we can rely on the Chi-Square Difference Test. If the test is not
significant, then the model with more fixed parameters (i.e. the more economical
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and therefore theoretically clearer model) is no worse than the model in which
more paths are allowed. Beware that, like the chi-square test, the chi-square
difference test is also very fast significant.

12.15 In a nutshell
In CFA, a previously accepted measurement model (number of factors, assign-
ment of indicators to factors, etc.) is checked on the basis of collected data.

The mathematical specification of measurement models works with fixed and
free parameters. Path diagrams can be converted into systems of equations.

The factor analysis or measurement model is essentially a linear regression model
where the main predictor, the factor, is latent. For a single subject, the simple
linear regression equation is defined as: 𝑦 = 𝑏0 + 𝑏1𝑥 + 𝑒. Similarly, for a single
item, the factor analysis model is: 𝑦1 = 𝜏1 + 𝜆1𝜂 + 𝑒. We can represent this
multivariate model (i.e., multiple outcomes, items, or indicators) as a matrix
equation:

⎛⎜
⎝

𝑦1
𝑦2
𝑦3

⎞⎟
⎠

= ⎛⎜
⎝

𝜏1
𝜏2
𝜏3

⎞⎟
⎠

+ ⎛⎜
⎝

𝜆1
𝜆2
𝜆3

⎞⎟
⎠

𝜂1 + ⎛⎜
⎝

𝑒1
𝑒2
𝑒3

⎞⎟
⎠

The variance-covariance matrix can be described using the model-implied covari-
ance matrix. This is in contrast to the observed population covariance matrix
which comes only from the data.

∑(𝜃) = ⎛⎜
⎝

𝜆1
𝜆2
𝜆3

⎞⎟
⎠

(𝜓11) (𝜆1 𝜆2 𝜆3) + ⎛⎜
⎝

𝜃11 𝜃12 𝜃13
𝜃21 𝜃22 𝜃23
𝜃31 𝜃32 𝜃33

⎞⎟
⎠

The basic assumption of factor analysis is that for a collection of observed vari-
ables there are a set of underlying factors that can explain the interrelationships
among those variables. These interrelationships are measured by the covari-
ances.

Traditionally, the intercepts (𝜏) are not estimated, which means that all the
parameters we need can come directly from the covariance model.

In the model-implied covariance, we assume that the residuals are independent
which means that for example, the covariance between the second and first
residual (𝜃23), is set to zero. As such the only covariance terms to be estimated
are the variance of the latent factors (𝜓) and the variances of the residuals (𝜃11,
𝜃22 and 𝜃33).
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Models must have sufficient degrees of freedom (relationship between empirical
information and parameters to be estimated) in order to be mathematically
solvable (model identification).

In order to identify a factor in a CFA model with three or more items, there
are two options known respectively as the marker method and the variance
standardization method:

• marker method fixes the first loading of each factor to 1,
• variance standardization method fixes the variance of each factor to 1 but

freely estimates all loadings.

In matrix notation, the marker method can be written as:

⎛⎜
⎝

1
𝜆2
𝜆3

⎞⎟
⎠

(𝜓11) (1 𝜆2 𝜆3) + ⎛⎜
⎝

𝜃11 0 0
0 𝜃22 0
0 0 𝜃33

⎞⎟
⎠

In matrix notation, the variance standardization method looks like:

⎛⎜
⎝

𝜆1
𝜆2
𝜆3
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⎞⎟
⎠

The results of a CFA are assessed on 3 levels:

• Indicator level: strength and significance of the factor loadings as well as
the size of the squared factor loadings

• Construct level: factor reliability, average extracted variance of factors,
discriminant validity

• Model Level: Chi-Square Test Statistic, RMSEA, SRMR

Four commonly used model fit measures are:

• Model chi-square is the chi-square statistic obtained from the maximum
likelihood statistic (in lavaan: Test Statistic for the Model Test User
Model)

• CFI is the Comparative Fit Index – values can range between 0 and 1
(values greater than 0.90, conservatively 0.95 indicate good fit)

• TLI Tucker Lewis Index which also ranges between 0 and 1 (if greater
than 1 it should be rounded to 1; values greater than 0.90 indicating good
fit). The CFI is always greater than the TLI.

• RMSEA is the root mean square error of approximation (in lavaan: p-
value of close fit, that the RMSEA < 0.05. If rejected, it means that the
model is not a close fitting model).

Historically, model chi-square was the only measure of fit but in practice the
null hypothesis was often rejected due to the chi-square’s heightened sensitivity
under large samples. To resolve this problem, approximate fit indexes that
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were not based on accepting or rejecting the null hypothesis were developed.
These can be further classified into absolute (e.g. CFI and TLI) and incremental
(e.g. RMSEA) fit indexes:

• incremental fit indexes: assess the ratio of the deviation of the user model
from the worst fitting model (a.k.a. the baseline model) against the devi-
ation of the saturated model from the baseline model.

• absolute fit indexes: compare the user model to the observed data.

12.16 How it works in R?
See the lecture slides confirmatory factor analysis:

You can also download the PDF of the slides here:

12.17 Quiz
True

False

Statement

The elements of the Factor Matrix represent correlations of each item with a
factor.

In common factor analysis, the sum of squared loadings is the eigenvalue (e.g.,
assume a two-factor solution with 3+ items).

The communality is unique to each factor or component.

In oblique rotation, an element of a factor pattern matrix is the unique contri-
bution of the factor to the item.

View Results

My results will appear here

12.18 Time to practice on your own

You can download the PDF of the CFA exercises here:
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12.18.1 Exercise 1: Big-5
To illustrate CFA, let us use the same International Personality Item Pool data
available in the psych package to confirm the big 5 personality structure.

Start by defining the model using the lavaan syntax and extract the parameters.
# load the data
data <- psych::bfi[, 1:25] # 25 first columns corresponding to the items
data <- na.omit(data)
# write the model
model_measurement <- "
Neuroticism =~ N1 + N2 + N3 + N4 + N5
Conscientiousness =~ C1 + C2 + C3 + C4 + C5
Extraversion =~ E1 + E2 + E3 + E4 + E5
Agreeableness =~ A1 + A2 + A3 + A4 + A5
Opennness =~ O1 + O2 + O3 + O4 + O5

"
fit_measurement <- lavaan::sem(model_measurement, data = data)
# summary(fit_measurement, fit.measures = TRUE, standardized = TRUE)
coef <- lavaan::parameterestimates(fit_measurement)
# output: only 10 first rows
lavaan::parameterEstimates(fit_measurement, standardized=TRUE) |>
dplyr::select('Latent Factor'=lhs,

Indicator=rhs,
B=est,
SE=se,
Z=z,
'p-value'=pvalue,
Beta=std.all) |>

dplyr::slice_head(n = 10) |> # select only the 10 first rows
knitr::kable(digits = 3, booktabs=TRUE)

Latent Factor Indicator B SE Z p-value Beta
Neuroticism N1 1.000 0.000 NA NA 0.825
Neuroticism N2 0.947 0.024 39.899 0 0.803
Neuroticism N3 0.884 0.025 35.919 0 0.721
Neuroticism N4 0.692 0.025 27.753 0 0.573
Neuroticism N5 0.628 0.026 24.027 0 0.503
Conscientiousness C1 1.000 0.000 NA NA 0.551
Conscientiousness C2 1.148 0.057 20.152 0 0.592
Conscientiousness C3 1.036 0.054 19.172 0 0.546
Conscientiousness C4 -1.421 0.065 -21.924 0 -0.702
Conscientiousness C5 -1.489 0.072 -20.694 0 -0.620

Also get the fit statistics of the model. Is it a good model?

173

https://ipip.ori.org/


fits <- lavaan::fitMeasures(fit_measurement)
data.frame(fits = round(fits[c("ntotal","df",

"chisq","pvalue",
"rmsea","rmsea.pvalue","srmr")], 2))

## fits
## ntotal 2436.00
## df 265.00
## chisq 4165.47
## pvalue 0.00
## rmsea 0.08
## rmsea.pvalue 0.00
## srmr 0.08

Lastly, make a visualization of the output using the semPaths() function.
semPlot::semPaths(fit_measurement, what = "est", rotation = 2,

style = "lisrel", font = 2)
title("Row Estimations")
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Row Estimations

12.18.2 Exercise 2: Calculate the degree of freedom for
one-factor CFA with more than 3 items

The benefit of performing a one-factor CFA with more than three items is that:

• your model is automatically identified (there will be more than 6 free
parameters)

• your model will not be saturated (there will be degrees of freedom left over
to assess model fit).

Imagine that we have specified the following model in lavaan with 8 items.
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#one factor eight items, variance std
mod <- 'f =~ q01 + q02 + q03 + q04 + q05 + q06 + q07 + q08'
onefac8items <- cfa(mod, data=dat,std.lv=TRUE)
summary(onefac8items, fit.measures=TRUE, standardized=TRUE)

From this model, explain how to obtain 20 degrees of freedom from the 8-item
one factor CFA by first calculating the number of free parameters and comparing
that to the number of known values.

Solution

The number of elements in the variance-covariance matrix is:

𝑛 ∗ (𝑛 + 1)
2 = 8 ∗ (8 + 1)

2 = 36

We also have 8 loadings (𝜆𝑖), 8 residual variances (𝜃𝑖) and 1 variance of
the factor (𝜓𝑖). Thus, in total we have 17 unique parameters.
This gives us 17-1=16 free parameters, where we have fixed 1 parameter
(using the variance standardization method).
Therefore, the degrees of freedom is 36-16=20. This suggests that we have
an over-identified model (degrees of freedom above 0).

12.18.3 Exercise 3: Calculate the degree of freedom for
two-factor CFA with more than 3 items

Imagine that we have specified the following model in lavaan with two factors:
#one factor eight items, variance std
mod <- '
f1 =~ q01 + q03 + q04 + q05 + q08
f2 =~ a*q06 + a*q07
## equate the 2 items on the same factors
## while setting the factor variance at 1
f1 ~~ 0*f2' ## orthogonal factors

twofac7items <- cfa(mod, data=dat,std.lv=TRUE)
summary(twofac7items, fit.measures=TRUE, standardized=TRUE)

From this model, explain how to obtain 15 degrees of freedom from the 7-item
two-factor CFA by first calculating the number of free parameters and com-
paring that to the number of known values. We also make the assumption of
uncorrelated (orthogonal) factors.
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Solution

The number of elements in the variance-covariance matrix is:

𝑛 ∗ (𝑛 + 1)
2 = 7 ∗ (7 + 1)

2 = 28

We also have 7 loadings (𝜆𝑖), 7 residual variances (𝜃𝑖) and 2 variance of the
factors (𝜓𝑖). Thus, in total we have 16 unique parameters. But we make
the assumption of uncorrelated factors, thus we have 14 free parameters.
Therefore, the degrees of freedom is 28-14=14. However, as we constrained
the loadings of q06 and q07 to be equal, it frees up a parameter and thus
we have 14+1=15 degrees of freedom.

Now, we make the assumption of correlated (oblique) factors, which gives us
the following model:
#one factor eight items, variance std
mod <- '
f1 =~ q01 + q03 + q04 + q05 + q08
f2 =~ q06 + q07'

twofac7items <- cfa(mod, data=dat,std.lv=TRUE)
summary(twofac7items, fit.measures=TRUE, standardized=TRUE)

Explain how to obtain 13 degrees of freedom from the 7-item two-factor CFA
by first calculating the number of free parameters and comparing that to the
number of known values.

Solution

The number of elements in the variance-covariance matrix is:

𝑛 ∗ (𝑛 + 1)
2 = 7 ∗ (7 + 1)

2 = 28

We also have 7 loadings (𝜆𝑖), 7 residual variances (𝜃𝑖) and 1 covariance of
the factors (𝜓21). Thus, in total we have 15 unique parameters. Therefore,
the degrees of freedom is 28-15=13.
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Chapter 13

Recap EFA and CFA

13.1 Recap on factor analysis: exploratory and
confirmatory

In exploratory factor analysis (EFA), all measured variables are related to every
latent variable. It is used to reduce data to a smaller set of summary variables
and to explore the underlying theoretical structure of the phenomena. It asks
what factors are given in observed data and, thereby, requires interpretation of
usefulness of a model (it should be confirmed with confirmatory factor analysis).

In confirmatory factor analysis (CFA), researchers can specify the number of
factors required in the data and which measured variable is related to which
latent variable. It asks how well a proposed model fits a given data.

The differences in both approaches can be summarized as follows:

13.1.1 Prerequisites
Prerequisites of factor analysis include:

• Condition: There are several interval-scaled characteristics (items).
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• Rule of thumb: At least 50 people and 3x more people as variables (ideally:
5x more people as variables!).

13.2 Recap slides on EFA and CFA
See the recap slides EFA and EFA:

You can also download the PDF of the slides here:

13.3 Additional optional exercices on CFA
13.3.1 Optional exercise: Anxiety (inspired from J. Lin’s

UCLA presentation)
We will use a real world example of a questionnaire which Andy Field terms
the SPSS Anxiety Questionnaire (SAQ). The first eight items consist of the
following:

• Statistics makes me cry
• My friends will think I’m stupid for not being able to cope with SPSS
• Standard deviations excite me
• I dream that Pearson is attacking me with correlation coefficients
• I don’t understand statistics
• I have little experience with computers
• All computers hate me
• I have never been good at mathematics

library(foreign)
## Warning: le package 'foreign' a été compilé avec la version R 4.3.2
dat <- read.spss(paste0("https://stats.idre.ucla.edu/wp-content/uploads/2018/05/SAQ.sav"),to.data.frame=TRUE,use.value.labels = FALSE)
# correlations
round(cor(dat[,1:8]),2)
## q01 q02 q03 q04 q05 q06 q07 q08
## q01 1.00 -0.10 -0.34 0.44 0.40 0.22 0.31 0.33
## q02 -0.10 1.00 0.32 -0.11 -0.12 -0.07 -0.16 -0.05
## q03 -0.34 0.32 1.00 -0.38 -0.31 -0.23 -0.38 -0.26
## q04 0.44 -0.11 -0.38 1.00 0.40 0.28 0.41 0.35
## q05 0.40 -0.12 -0.31 0.40 1.00 0.26 0.34 0.27
## q06 0.22 -0.07 -0.23 0.28 0.26 1.00 0.51 0.22
## q07 0.31 -0.16 -0.38 0.41 0.34 0.51 1.00 0.30
## q08 0.33 -0.05 -0.26 0.35 0.27 0.22 0.30 1.00
# covariances
round(cov(dat[,1:8]),2)
## q01 q02 q03 q04 q05 q06 q07 q08
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## q01 0.69 -0.07 -0.30 0.34 0.32 0.20 0.28 0.24
## q02 -0.07 0.72 0.29 -0.09 -0.10 -0.07 -0.15 -0.04
## q03 -0.30 0.29 1.16 -0.39 -0.32 -0.27 -0.45 -0.24
## q04 0.34 -0.09 -0.39 0.90 0.37 0.30 0.43 0.29
## q05 0.32 -0.10 -0.32 0.37 0.93 0.28 0.36 0.23
## q06 0.20 -0.07 -0.27 0.30 0.28 1.26 0.64 0.22
## q07 0.28 -0.15 -0.45 0.43 0.36 0.64 1.22 0.29
## q08 0.24 -0.04 -0.24 0.29 0.23 0.22 0.29 0.76

interpretation

The interpretation of the correlation table are the standardized covariances
between a pair of items. In a correlation table, the diagonal elements are
always one because an item is always perfectly correlated with itself.
In a typical variance-covariance matrix, the diagonals constitute the vari-
ances of the item and the off-diagonals the covariances.

We decide the use only Items 1, 3, 4, 5, and 8 as indicators of SPSS Anxiety
and Items 6 and 7 as indicators of Attribution Bias. Thus, we will now proceed
with a two-factor CFA where we assume uncorrelated (or orthogonal) factors.
Having a two-item factor presents a special problem for identification. In order
to identify a two-item factor there are two options:

• Freely estimate the loadings of the two items on the same factor but equate
them to be equal while setting the variance of the factor at 1

• Freely estimate the variance of the factor, using the marker method for the
first item, but covary (correlate) the two-item factor with another factor

Since we are doing an uncorrelated two-factor solution here, we are relegated to
the first option.

How does this model compare to a one-factor model?
library(lavaan)
## Warning: le package 'lavaan' a été compilé avec la version R 4.3.2
## This is lavaan 0.6-17
## lavaan is FREE software! Please report any bugs.
# one factor model
m1 <- 'f1 =~ q01+ q03 + q04 + q05 + q08

f2 =~ a*q06 + a*q07
f1 ~~ 0*f2 '

onefac7items <- cfa(m1, data=dat, std.lv=TRUE)
summary(onefac7items, fit.measures=TRUE, standardized=TRUE)
## lavaan 0.6.17 ended normally after 14 iterations
##
## Estimator ML
## Optimization method NLMINB
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## Number of model parameters 14
## Number of equality constraints 1
##
## Number of observations 2571
##
## Model Test User Model:
##
## Test statistic 841.205
## Degrees of freedom 15
## P-value (Chi-square) 0.000
##
## Model Test Baseline Model:
##
## Test statistic 3876.345
## Degrees of freedom 21
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.786
## Tucker-Lewis Index (TLI) 0.700
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -23684.164
## Loglikelihood unrestricted model (H1) -23263.562
##
## Akaike (AIC) 47394.328
## Bayesian (BIC) 47470.405
## Sample-size adjusted Bayesian (SABIC) 47429.101
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.146
## 90 Percent confidence interval - lower 0.138
## 90 Percent confidence interval - upper 0.155
## P-value H_0: RMSEA <= 0.050 0.000
## P-value H_0: RMSEA >= 0.080 1.000
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.180
##
## Parameter Estimates:
##
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## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## f1 =~
## q01 0.539 0.017 31.135 0.000 0.539 0.651
## q03 -0.573 0.023 -24.902 0.000 -0.573 -0.533
## q04 0.652 0.020 33.032 0.000 0.652 0.687
## q05 0.567 0.020 27.812 0.000 0.567 0.588
## q08 0.431 0.019 22.862 0.000 0.431 0.494
## f2 =~
## q06 (a) 0.797 0.017 46.329 0.000 0.797 0.710
## q07 (a) 0.797 0.017 46.329 0.000 0.797 0.723
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## f1 ~~
## f2 0.000 0.000 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .q01 0.395 0.015 26.280 0.000 0.395 0.576
## .q03 0.827 0.027 30.787 0.000 0.827 0.716
## .q04 0.474 0.020 24.230 0.000 0.474 0.527
## .q05 0.608 0.021 29.043 0.000 0.608 0.654
## .q08 0.575 0.018 31.760 0.000 0.575 0.756
## .q06 0.623 0.027 22.916 0.000 0.623 0.495
## .q07 0.580 0.026 21.925 0.000 0.580 0.477
## f1 1.000 1.000 1.000
## f2 1.000 1.000 1.000
#uncorrelated two factor solution, var std method
m <- 'f1 =~ q01+ q03 + q04 + q05 + q08

f2 =~ a*q06 + a*q07
f1 ~~ 0*f2 '

twofac7items <- cfa(m, data=dat, std.lv=TRUE)
summary(twofac7items, fit.measures=TRUE, standardized=TRUE)
## lavaan 0.6.17 ended normally after 14 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 14
## Number of equality constraints 1
##
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## Number of observations 2571
##
## Model Test User Model:
##
## Test statistic 841.205
## Degrees of freedom 15
## P-value (Chi-square) 0.000
##
## Model Test Baseline Model:
##
## Test statistic 3876.345
## Degrees of freedom 21
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.786
## Tucker-Lewis Index (TLI) 0.700
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -23684.164
## Loglikelihood unrestricted model (H1) -23263.562
##
## Akaike (AIC) 47394.328
## Bayesian (BIC) 47470.405
## Sample-size adjusted Bayesian (SABIC) 47429.101
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.146
## 90 Percent confidence interval - lower 0.138
## 90 Percent confidence interval - upper 0.155
## P-value H_0: RMSEA <= 0.050 0.000
## P-value H_0: RMSEA >= 0.080 1.000
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.180
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
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##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## f1 =~
## q01 0.539 0.017 31.135 0.000 0.539 0.651
## q03 -0.573 0.023 -24.902 0.000 -0.573 -0.533
## q04 0.652 0.020 33.032 0.000 0.652 0.687
## q05 0.567 0.020 27.812 0.000 0.567 0.588
## q08 0.431 0.019 22.862 0.000 0.431 0.494
## f2 =~
## q06 (a) 0.797 0.017 46.329 0.000 0.797 0.710
## q07 (a) 0.797 0.017 46.329 0.000 0.797 0.723
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## f1 ~~
## f2 0.000 0.000 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .q01 0.395 0.015 26.280 0.000 0.395 0.576
## .q03 0.827 0.027 30.787 0.000 0.827 0.716
## .q04 0.474 0.020 24.230 0.000 0.474 0.527
## .q05 0.608 0.021 29.043 0.000 0.608 0.654
## .q08 0.575 0.018 31.760 0.000 0.575 0.756
## .q06 0.623 0.027 22.916 0.000 0.623 0.495
## .q07 0.580 0.026 21.925 0.000 0.580 0.477
## f1 1.000 1.000 1.000
## f2 1.000 1.000 1.000

Interpretation

Since we have 7 items, the total elements in our variance covariance matrix
is 7(7+1)/2=28. The number of free parameters to be estimated include
7 residual variances , 7 loadings for a total of 14. Then we have 28-14=14
degrees of freedom. However for identification of the two indicator factor
model, we constrained the loadings of Item 6 and Item 7 to be equal,
which frees up a parameter and hence we end up with 14+1=15 degrees
of freedom.
We can see that the uncorrelated two factor CFA solution gives us a higher
chi-square (lower is better), higher RMSEA and lower CFI/TLI than the
one-factor model, which means overall it is a poorer fitting model.

We decide to go with a correlated (oblique) two factor model:
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#correlated two factor solution, marker method
m <- 'f1 =~ q01+ q03 + q04 + q05 + q08

f2 =~ q06 + q07'
twofac7items_n <- cfa(m, data=dat, std.lv=TRUE)
summary(twofac7items_n, fit.measures=TRUE, standardized=TRUE)
## lavaan 0.6.17 ended normally after 18 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 15
##
## Number of observations 2571
##
## Model Test User Model:
##
## Test statistic 66.768
## Degrees of freedom 13
## P-value (Chi-square) 0.000
##
## Model Test Baseline Model:
##
## Test statistic 3876.345
## Degrees of freedom 21
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.986
## Tucker-Lewis Index (TLI) 0.977
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -23296.945
## Loglikelihood unrestricted model (H1) -23263.562
##
## Akaike (AIC) 46623.891
## Bayesian (BIC) 46711.672
## Sample-size adjusted Bayesian (SABIC) 46664.013
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.040
## 90 Percent confidence interval - lower 0.031
## 90 Percent confidence interval - upper 0.050
## P-value H_0: RMSEA <= 0.050 0.952
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## P-value H_0: RMSEA >= 0.080 0.000
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.021
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## f1 =~
## q01 0.513 0.017 30.460 0.000 0.513 0.619
## q03 -0.599 0.022 -26.941 0.000 -0.599 -0.557
## q04 0.658 0.019 34.876 0.000 0.658 0.694
## q05 0.567 0.020 28.676 0.000 0.567 0.588
## q08 0.435 0.018 23.701 0.000 0.435 0.498
## f2 =~
## q06 0.669 0.025 27.001 0.000 0.669 0.596
## q07 0.949 0.027 35.310 0.000 0.949 0.861
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## f1 ~~
## f2 0.676 0.020 33.023 0.000 0.676 0.676
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .q01 0.423 0.014 29.157 0.000 0.423 0.617
## .q03 0.796 0.026 31.025 0.000 0.796 0.689
## .q04 0.466 0.018 25.824 0.000 0.466 0.518
## .q05 0.608 0.020 30.173 0.000 0.608 0.654
## .q08 0.572 0.018 32.332 0.000 0.572 0.752
## .q06 0.811 0.030 27.187 0.000 0.811 0.644
## .q07 0.314 0.040 7.815 0.000 0.314 0.258
## f1 1.000 1.000 1.000
## f2 1.000 1.000 1.000

185



Interpretation

Compared to the uncorrelated two-factor solution, the chi-square and RM-
SEA are both lower. The test of RMSEA is not significant which means
that we do not reject the null hypothesis that the RMSEA is less than
or equal to 0.05. Additionally the CFI and TLI are both higher and pass
the 0.95 threshold. This is even better fitting than the one-factor solution.
We then choose the final two correlated factor CFA model as shown below:
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Chapter 14

Structural Equation
Modelling

14.1 Structural equation model (SEM)
CFA is a structure-testing procedure which enable us to answer questions such
as: Do my data confirm my previously made hypothetical assumptions about
their (factorial) structure?

SEM is a structure testing technique. It enables us to answer questions such
as: Do my data confirm my previously made hypothetical assumptions about
the “causal” structure between variables? Causal structures can be diverse and
SEM can flexibly map this diversity. Structural equation models are about test-
ing (sometimes very complex) “causal” structures between (potentially many)
variables.

Simply speaking, a structural equation model (SEM) is a combination of confir-
matory factor analysis and path analysis.

Structural equation modeling includes two sets of models:

• the measurement model
• the structural model

The measurement model can be expressed as a factor model. The figure below
displays a model to measure political trust using three variables - trust in parlia-
ment, trust in government and trust in court. It also measures satisfaction with
democracy (SWD) using three variables - media use, political interest and feel-
ing of self-efficacy. If one believes that satisfaction with democracy influences
political trust, then one can fit a path model. Therefore, a structural model is
actually a path model.
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14.2 Logic of SEM and similarity with CFA
SEM are hypothesis-testing methods. In this context, previously theoretically
deduced considerations on relationships between variables are tested using em-
pirical data. It is thus determined in advance which variables may/should be
related and which should not (similar to CFA).

As with the CFA, it is a comparison of covariance matrices that are checked as
a whole:

• empirical variance-covariance matrix (= actual correlations between all
examined variables in the data)

• model-theoretical variance-covariance matrix (= expected relationships be-
tween all variables examined)

The aim is that the model-theoretical matrix is able to reproduce the empirical
matrix. SEM allow the testing of entire hypotheses systems in one model.

14.3 Comparison to “normal” regression
SEM follow the intuitive logic of causal models. We can thus assess simultaneous
and overall testing of several “causal” relationships in one model instead of
testing individual hypotheses in different analyzes.

For instance, linear regression models unrealistically assumes that constructs
are perfectly measured, thus confusing measurement error with statistical error
(e.g. unexplained variance).
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SEM with latent variables allow the measurement error to be extracted from the
statistical error. Therefore, SEM come with potentially more exact estimation
of the significance and strength of the connections between latent variables.

14.4 Construct validity, model fit, and better
explanation of relationships

SEM seeks to find a balance between maximizing the variance between con-
structs while ensuring the model remains parsimonious and generalizable.

Maximizing the sum of squares between constructs can be useful in several
respects:

• Reliability and Validity Assessment: higher variance suggests that the
latent variable accounts for a larger proportion of the variation in the
observed indicators, which contributes to the construct’s reliability and
validity.

• Model Fit and Explanation of Relationships: a model that explains a
higher proportion of the variance in the observed variables tends to fit the
data better.

• Precision in Estimation (robustness of conclusions): higher variance be-
tween constructs often results in more precise estimates of the relation-
ships among constructs.

14.5 Quick recap of the concepts
A SEM thus specify causal relationships between exogenous and endogenous
variables. Below is a quick recap of the core concepts:

• Observed variable: Exists in data
• Indicator: Observed (exogenous or endogenous)
• Latent variable: Constructed in model
• Factor: Latent (exogenous or endogenous)
• Exogenous: Independent that explains endogenous (observed or latent)

(predictor)
• Endogenous: Dependent that has a causal path leading to it (observed or

latent) (response)
• Measurement model: Links observed and latent variables
• Loading: Path between indicator and factor
• Regression model: Path between exogenous and endogenous variables

14.6 Latent variables
In the structural model, the (“causal”) relationships between different variables
are formulated (directed relationships!). These variables can be both latent
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(= hypothetical, not directly observable) and manifest (= directly observable)
constructs.

Latent variables are specified in the measurement model (like CFA) and are
estimated in such a way that they best represent their respective manifest in-
dicators (items). Manifest constructs (not indicators!) of the structural model
are not part of the latent variable measurement model.

14.7 Statistical error versus measurement error
SEM with latent variables allow the distinction between statistical error in es-
timating the “causal” influences of the exogenous on the endogenous variables
(unexplained expression of the endogenous variable by the exogenous variable)
and the measurement error of the variable (unexplained expression of the man-
ifest indicators by the latent variable).

Analyzes with only manifest variables (e.g., ANOVA, multiple regression, me-
diation, path models) mix up the statistical error and the measurement error
and implicitly assume perfectly reliable measurements. Since this is unrealistic
and there should be measurement errors even with manifest variables (e.g., not
perfect reliability), the statistical error (unexplained variance) may be larger
than it actually is if the measurement error were included.

14.8 Path models
A path model is a special case of a SEM in which the structural model is present
but the measurement model is omitted (exclusively manifest constructs in the
structural model).

Path models can also be calculated as SEM in the covariance analysis approach
(including model quality measures, etc.), but for better differentiation they are
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not called SEM but path models.

More vocabulary

SEM without latent variables (i.e. with structural model but without mea-
surement model), synonymous terms:

• Path analysis
• Path model

IMPORTANT: Do not confuse the terms with the “path diagram” (path
diagram = only the graphical representation of relationship structures
between variables; path diagrams can be used for SEM with and without
latent variables created)
SEM with at least one latent variable (i.e. with a structural model and at
least one measurement model) has synonymous terms:

• Structural equation model
• Causal analysis (caution: despite SEM, causality still depends on

the data collection method, more later)
• Covariance structure analysis

14.9 Prerequisites
There are several mathematical prerequisites:

• Rule of thumb: sample size K at least 200 (also K - q > 50, where K is
the sample size and q is the number of free parameters to be estimated)

• If only latent variables in the structural model:
– Prerequisites as for CFA
– Reflective measurement model
– Interval-scaled and reasonably normally distributed manifest indica-

tor variables
• If partially latent and partially manifest constructs in the structural

model:
– SEM can handle a mixture of manifest and latent constructs in the

structural model very well
– Structural equation system must be identifiable, i.e. the equation

system must be mathematically solvable (similar to CFA)

There are also theoretical prerequisites:

• Theoretically secured hypotheses about the connection between constructs
in the SEM

– Especially with cross-sectional data: theoretically reasonable de-
duced “causal direction” (which constructs are exogenous, which
endogenous?)

• Adhere to the confirmatory character of the analysis or, if this is not done,
then deal with it transparently
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– Strictly confirmatory testing: If we proceeded strictly confirmatory,
we could only specify one model and accept or reject it with a test
(hypothesis testing).

– Alternative models testing: Testing different plausible theories
against each other

– Generating adaptation of the model until the data “fit”

14.10 Identification of the structure
The identification of the model structure consists of two “tasks”:

• Establishing a metric for the latent constructs.
• Checking whether there is enough information to estimate the model.

Both steps influence the number of degrees of freedom of the model (model
degrees of freedom). This aspect also relates to the complexity of the model.
The more complex a model is, the more parameters have to be estimated, and the
greater the model’s degrees of freedom must be in order to make the estimation
possible.

Important: This is not about the sample size, which can also be used to deter-
mine “degrees of freedom”. Observations do not mean individual cases here, but
the number of manifest variables (number whether observed variables).

14.10.1 Establishing metric
The latent variables and error variables to be estimated initially have no metric.
In order to be able to interpret the variable later, a scale must be assigned.

One possibility is to choose a reference variable and fix the factor loading to
1. With regard to the latent variable, the “best” indicator variable should be
selected (i.e. the variable that is assumed to best index the latent variable).
It means that the latent variable is identical to the selected indicator variable
except for the measurement error.

In addition, all relationships between the measurement error terms to be esti-
mated and the measured indicator variables are fixed at 1. It means that the
measurement errors to be estimated correspond to the observed values except
for the influence of the latent variables (everything that is not affected by the
latent variable in the indicator variable is explained is a measurement error).

Nota bene: For each fixed parameter, we gain one model degree of freedom (no
longer needs to be estimated).

14.10.2 Checking model information
If n manifest variables are collected as part of a project, empirical variances and
covariances can be calculated from these variables:
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𝑝 = 𝑛(𝑛 + 1)
2

, where 𝑝 corresponds to the number of non-redundant values in the variance-
covariance matrix. It thus corresponds to the available “information” that we
use as the basis for calculating all free parameters of our model.

The difference between the available empirical information (𝑝) and the number
of (free) parameters to be estimated (𝑞) gives the degrees of freedom of the
model (𝑑𝑓𝑀).

𝑑𝑓𝑀 = 𝑝 − 𝑞
If the empirically available information is the same as the number of parameters
to be estimated, the number of model degrees of freedom corresponds to zero.
The number of model parameters to be estimated must not be less than the
number of empirical information given, otherwise a model is not identified (i.e.,
not solvable). The degrees of freedom of the model must be > or equal to zero
for a specified model to be considered identified.

Degree of freedom: calculation for SEM

Recall that the formula for calculation degrees of freedom is as follows:

𝑑𝑓 = 𝑚(𝑚 + 1)
2 − 2𝑚 − 𝑋(𝑋 − 1)

2
where 𝑚 represent the number of indicators and 𝑋 the number of inde-
pendent latent constructs.
For SEM, this formula includes two additional parameters:

𝑑𝑓 = 𝑚(𝑚 + 1)
2 − 2𝑚 − 𝑋(𝑋 − 1)

2 − 𝑔 − 𝑏

where 𝑚 represent the number of indicators, 𝑋 the number of indepen-
dent latent constructs, 𝑔 the structural relationships from independent to
dependent constructs, and 𝑏 structural relationships from dependent to
dependent constructs.
In the above example, we have 9 indicators (𝑚) and 1 independent latent
construct (𝑋). Furthermore, we have 2 gamma relationships and 1 beta
relationship. Applying the formula, we obtain:

𝑑𝑓 = 9(10)
2 − 18 − 1(0)

2 − 2 − 1 = 24

14.11 Analytical steps for SEM
• Model Specification - defines hypothetical relationships
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• Model Identification:
– Over identified - more known than free parameters
– Just-identified - the number of unknown equals the number of free

parameters
– Under-identified - the number of unknown is greater than the number

of parameters (model coefficients cannot be estimated)
• Parameter Estimation - comparing actual and estimated covariance

(i.e. maximum likelihood estimate)
• Model Evaluation- goodness of fit (i.e. Chi-square, Akaike Information

Criterion, Comparative Fit Index)
• Model Modification - post hoc model modification

14.11.1 Chi-square test
The Chi-Square test poses that:

• H0: empirical covariance matrix is equal to the model-theoretical covari-
ance matrix

• H1: empirical covariance matrix is not equal to the model-theoretical
covariance matrix

The smaller the difference between the two matrices, the smaller the chi-square
value. So, the smaller the chi-square is, the better it is. The test should not turn
out to be significant, since equality between the empirical and model-theoretical
variance-covariance matrix is desirable.

14.11.2 RMSEA (Root Mean Squared Error of Approxi-
mation)

RMSEA uses inferential statistics to check whether a model can approximate
reality well (approximation test). It is therefore not about the absolute correct-
ness of the model, as with the Chi-Square test, but about evaluating the best
possible approximation.

Recommendations:

• RMSEA < .05 good fit (also test of the characteristic value: p close > .1,
means that RMSEA is clearly not significantly larger than RMSEA < .05)

• RMSEA < .08 acceptable fit (also test of the parameter: .05 < p close < .1
means that RMSEA does not tend to be significantly larger than RMSEA
< .05)

14.11.3 SRMR (Standardized Root Mean Squared Resid-
ual)

Usually there is a discrepancy between the empirical and model-theoretical co-
variance matrix. Therefore, descriptive measures of discrepancy are often used.
These give an answer to the question of whether an existing discrepancy can be
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neglected and also includes the model complexity. If the empirical and model-
theoretical covariance matrix are completely identical, this measure assumes a
value of zero.

Recommendations:

• SRMR < .05 good fit
• SRMR < .10 acceptable fit

14.12 Individual components
Have the individual components of the SEM (entire measurement model AND
structural model) also been identified? For structural models, this depends
heavily on the structure:

• Recursive models (= models without repercussions between endogenous
variables, i.e. directed models) are always identified

• Non-recursive models (= models with repercussions between endogenous
variables, i.e. undirected models) are difficult to determine by hand, you
should leave that to the statistics program

14.13 Critics to SEM
SEM seems to test causal relationships between exogenous and endogenous vari-
ables and is even called causal analysis. But, ultimately, only relationships be-
tween variables become statistical examined and the researcher decides (often)
what are exogenous and what are endogenous variables.Directions of impact
could be directed in the opposite direction as long as the method of data collec-
tion is cross-sectional. Causal evidence using SEM is only possible with panel
data or in an experiment (and then not mandatory for all paths of the structural
model).

In practice, SEM are too often not tested for confirmation, but adjusted until the
model fit is “good”, without this being reported transparently. The more paths
between variables are freely estimated in the structural model, the less SEM
test theoretical ideas. More parsimonious models in which more parameters
are fixed a priori (e.g., direct effects in SEM mediation models set to 0) test
assumptions, but if everything is allowed to be related to everything (i.e., freely
estimated), then there are no assumptions more that are tested, just a SEM
that fits the data.

Interesting resource: Shah, R., & Goldstein, S. M. (2006). Use of structural
equation modeling in operations management research: Looking back and for-
ward. Journal of Operations management, 24(2), 148-169. https://doi.org/10.1
016/j.jom.2005.05.001
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14.14 How it works in R?
See the lecture slides on SEM:

You can also download the PDF of the slides here:

14.15 Example from the literature
The following article relies on SEM as a method of analysis:

Gil de Zúñiga, H., González-González, P., & Goyanes, M. (2021). Pathways to
political persuasion: Linking online, social media, and fake news with political
attitude change through political discussion. American Behavioral Scientist,
00027642221118272. Available here.

Please reflect on the following questions:

• What is the research question of the study?
• What are the research hypotheses?
• Is SEM an appropriate method of analysis to answer the research question?
• What are the main findings of the SEM?

14.16 Time to practice on your own

You can download the PDF of the exercises here:

14.16.1 SEM with multiple latent variables
We want to create a structural model that relates multiple latent variables using
social science data describing the effect of student background on academic
achievement.

We create a measurement model by defining each latent variable:

• Adjustment: measured by motivation, harmony, and stability.
• Risk: measured by verbal, negative parent psychology, and socioeconomic

status.
• Achievement: measured by reading, arithmetic, and spelling.

We also define the regression path where achievement will be the combination
of adjustment and risk.
dat <- read.csv("https://stats.idre.ucla.edu/wp-content/uploads/2021/02/worland5.csv")
mod <- '
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# measurement model
adjust =~ motiv + harm + stabi
risk =~ verbal + ppsych + ses
achieve =~ read + arith + spell
# regression
achieve ~ adjust + risk

'

Next, we fit the model to the data using sem() from lavaan. Followed by a
summary, including model fit.
fit <- lavaan::sem(mod, data=dat)
summary(fit, fit.measures=TRUE)
## Length Class Mode
## 1 lavaan S4

How would you illustrate this analysis using a path diagram?

Solution

We obtain the following results:

Note that further analysis using these data can be found in the Introduction to
structural equation modeling (SEM) in R with Lavaan from the UCLA: Statis-
tical Consulting Group.

14.16.2 SEM framework
Based on the following flowchart (original can be found here), state whether the
following statements are true or false:

• SEM encompasses a broad range of linear models and combines simulta-
neous linear equations with latent variable modeling.
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Solution

True: Multivariate regression and path analysis are simultaneous equa-
tions of observed variables; factor analysis is a latent variable model, and
structural regression combines the concepts of path analysis with factor
analysis.

• Multivariate regression means that there is always more than one exoge-
nous predictor in my model.

Solution

False: Multivariate regression indicates more than one endogenous vari-
able. You can certainly have only one exogenous predictor of multiple
endogenous variables.

• Structural regression models the regression paths only among latent vari-
ables.

Solution

True: Structural regression defines relationships between latent variables
and path analysis defines relationships between observed variables.
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Chapter 15

Multilevel modelling

15.1 Multilevel regression analysis
Many research topics have multilevel structured data which consist of multiple
macro and micro units within each macro unit (e.g. individuals within coun-
tries, individuals within occupations, children within classes within schools, etc).
Therefore, at each level there are both mean characteristics (fixed effects) and
differences (random effects).

Single level regression modelling is not the appropriate method to use here.
For instance, the effect of an X within clusters can be different from the effect
between clusters. Indeed, single level regression does not consider the nested
data structure, which may violate the uncorrelated errors assumption. It is likely
that in a “rich” country all people have higher wages than in “poor” countries?
If errors are correlated, this is likely to cause the following problems:

• efficiency of estimators is low
• standard errors are low
• coefficients are often significant

It will also be unclear:

• how much variation in Y is at each level?
• how much the context impacts on individual level after controlling for

other relevant factors?

The purpose of multilevel modelling (MLM) is to correct for biased estimates
resulting from clustering and to provide correct standard errors, confidence in-
tervals, as well as significance tests. It will thus decompose the total variance
of Y into portions associated with each level (e.g. individual vs country).

We might want to know: How much variation is there in individual wages be-
tween and within countries? Which countries have particularly low and high
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wages ?

15.1.1 Fixed versus random effects
In order to understand MLM we need to understand random effects, and to
understand random effects we need to understand variance. We often need to
think more about where the variance in our system is showing up in our model.
It allows us to decompose the variance of the dependent variable into:

• within-context variance
• between-context variance

So far, we are familiar with the residual variance from OLS, but might that
residual variance be better attributed to within a group? Or between a group?

Recall that a factor is a categorical predictor that has two or more levels. Up
to this point (e.g. in ANOVAs) we have only talked about fixed factors which
assumes that the levels are separate, independent, and not similar. Fixed ef-
fects estimate separate levels with no relationship assumed between the levels.
Fixed effects also assume a common variance known as homoscedasticity. Post-
hoc adjustments are needed to do pairwise comparisons of the different factor
levels. Random effects means that each level can be thought of as a random
variable from an underlying process or distribution. Estimation of random ef-
fects provides inference about the specific levels (similar to a fixed effect), but
also population level information (think about it as if each level of the effect is
a draw from a random variable).

15.1.2 Example
Let’s image that we have 10 people (10 levels in our model) in a study about
time spent to read the news on a daily basis over a 5-day period. Each day, we
ask people to report how much time they spent reading the news (n=10*5=50)
so that each person has 5 observations.

• A fixed effect model enables us to estimate the means of the 10 individuals
and assumes that each of the individuals has a common variance around
their news reading time (variance is the same or similar for everyone in
the study).

• A random effect model enables us to estimate the mean and variance of
the participants and to make a reasonable prediction about others that
were not enrolled in the study (amount of time spent to read the news
within a given individual is much likely to be similar than compared to
someone else).

15.1.3 When not to use random effects
You might not want to use random effects when the number of factor levels
is very low (there is not definitive recommendation here). Furthermore, it is
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commonly reported that you may want five or more factor levels for a random
effect in order to really benefit from what the random effect can do. Note
that a group with a large sample size and/or strong information (e.g. a strong
relationship) will have very little influence of the grand mean and largely reflect
the information contained entirely within the group.

Another case in which you may not want to random effect is when you do not
assume that your factor levels come from a common distribution.

We already know about the OLS model (labelled “fixed effects” in the figure
below). The next figure displays different types of random effects:

Figure 15.1: Source: https://bookdown.org/steve_midway/DAR/random-
effects.html

15.2 Fixed effect regression approach
One might account for the nested structured of the data by including a “group-
ing variable” for individuals (dummy for each country or year) or inclusion of
contextual explanatory variables (e.g. gender equality index per country).

𝑦𝑖𝑗 = 𝛽0 + 𝛽1 ∗ 𝑋𝑖𝑗 + ∑
𝐶−1

(𝛽𝐶 ∗ 𝐶𝐷𝑗 + 𝜖𝑖𝑗)

where, 𝛽0 is the overall intercept (e.g. reference country or year) and 𝛽𝐶 is the
intercept for one country. The problem is that grouping parameters are treated
as fixed effects ignoring random variability associated with macro-level charac-
teristics. This “dummy variable approach” thus suggests that group differences
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are fixed effects. What if number of groups is very large? What about includ-
ing group-level predictors as all degrees of freedom at group-level have been
consumed by country dummy?

15.3 Random intercept model (with fixed slope)
The next model we will examine is the MLM with a random intercept and fixed
slope.

15.3.1 Null model
In its simplest form, a MLM is in the form of a “null model” which contains no
explanatory variables. It thus includes one regression constant (intercept) and
assumes that this varies across contexts. The intercept is a random variable.

So far, we are able to answer questions like: Are there countries differences
with respect to happiness? How much of this variation is due to these country
differences?

15.3.2 Interclass Correlation Coefficient (ICC)
A MLM with a random intercept is a point where we can pause and run a
diagnostic called the Interclass Correlation Coefficient (ICC).

𝐼𝐶𝐶 = 𝜎2
𝛼

𝜎2 + 𝜎2𝛼

The ICC tells us how much similarity is within contexts (i.e. countries). Basi-
cally, it accounts for the closeness of observations in same context relative to
closeness of observations in different contexts.

For instance, it can tell us how much % of variance in Y (e.g. happiness) can be
explained by context (belonging to a different country).

The ICC ranges from 0 (no clustering/single level data structure) and 1 (maxi-
mum clustering). In practice, 0 or 1 rarely occur. A general recommendation is
that if the ICC is small, then use of a single level model.

15.3.3 Random intercept model (with fixed slope) includ-
ing one predictor

At this stage, it is unclear which factors account for the variation. Are there
more reasons why individuals and countries might differ with respect to happi-
ness?

Random intercept model is a combination of variance component and a linear
model (for a person 𝑖 in country 𝑗). We thus have a fixed part (𝛽0 + 𝛽𝑥 ∗
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𝑋𝑖𝑗), where the estimated parameters are the beta coefficients and are the same
for each observation in the sample. We also have a random part (𝑢0𝑗 + 𝜖𝑖𝑗),
where estimated parameters are variances which are allowed to vary (e.g. across
countries).

𝑦𝑖𝑗 = 𝛽0 + 𝛽𝑥 ∗ 𝑋𝑖𝑗 + 𝑢0𝑗 + 𝜖𝑖𝑗

In this model, there are two random terms and therefore two types of residuals:
𝑢𝑗 a the level-2 and 𝑒𝑖𝑗 at the level-1. There are also an overall (average) line
𝛽0 and group (average) lines 𝛽0 + 𝑢𝑗.

So far, we are able to answer questions as: Do country differences in happiness
remain after controlling for gender? How much of variation in happiness is due
to country differences after controlling for gender? What is the relationship
between an individual’s happiness and their gender?

15.3.4 Model assumptions
The model assumptions are that individual and group-level residuals are nor-
mally distributed. Furthermore, residuals at the same/different level are uncor-
related.

15.4 Random slope model (with random inter-
cept)

The assumption of random intercept model suggests that group lines have all
same slope as overall regression line in every group (effect of X on Y is the same
for every country). Is this always valid? It can be argued that X is not a fixed
but a random effect and that its slope can vary across groups.

We can account for the random slope by adding random term to coefficient of
𝑥1𝑖𝑗 (e.g. working hours), so it can be different for each group (e.g. country):
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𝑦𝑖𝑗 = 𝛽0 + (𝛽1 + 𝑢1𝑗) ∗ 𝑥1𝑖𝑗 + 𝑢0𝑗 + 𝜖0𝑖𝑗

Note that one extra parameter 𝑢1𝑖𝑗 leads to two extra parameters 𝜎2
𝑢1 (variance

in slopes between groups) and 𝜎2
𝑢01 (covariance between intercepts and slopes).

With a random slope model, we could now answer questions as: Does the effect
of being employed has the same impact on happiness across countries?

Useful reference:

• Sommet, N. &Morselli, D. (2021). Keep Calm and Learn Multilevel Linear
Modeling: A Three-Step Procedure Using SPSS, Stata, R, and Mplus.
(International Review of Social Psychology), 34(1). Available here.

15.4.1 Note on fixed intercept with random slope model
It might be the case that a model requires a fixed intercept but a random slope
specification. This could be the case when we hypothesize that the effect of our
predictor differs among groups, but when we want to fix the intercept because
we know that all groups start in a similar place.

15.4.2 Testing the random part
The likelihood ratio test (LRtest) can be used to compare the random slope
model to a random intercept model. The null hypothesis states that 𝜎2

𝑢1 and
𝜎2

𝑢0 should equal 0. If this is true, the random intercept model is more appropri-
ate than a random slope model. If random intercept/slope coefficients are not
significantly different from zero, this suggests that there is not much random
variability in the slope/intercept. Therefore, there is no need to specify random
parameter.
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15.5 Cross-level interactions
Adding cross-level interactions allows us to assess whether contextual factors (Z)
influence the effect of level-1 X variables. For instance, we can answer questions
such as: Is the effect of gender on happiness stronger/weaker in countries with
a high gender equality index?

𝑦𝑖𝑗 = 𝛽0 + 𝛽1 ∗ 𝑥𝑖𝑗 + 𝛽2 ∗ 𝑍𝑗 + 𝛽3𝑥𝑖𝑗 ∗ 𝑍𝑗 + 𝑢0𝑗 + 𝑢1𝑗𝑥𝑖𝑗 + 𝜖𝑖𝑗

The cross-level interaction should be included in the fixed part of model. There-
fore, the direct main and interaction effects have to be interpreted together
(similar to OLS): the 𝛽3 coefficient indicates the impact of each unit change in
Z on the slope 𝛽1.

Useful links to external data sources to link at the macro-level are:

• Eurostat: http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/
home/

• OECD: http://www.oecd.org/home
• Worldbank: http://data.worldbank.org/
• ILO: http://www.ilo.org/global/statistics-and-databases/lang--en/index

.htm
• Databanks: http://www.gapminder.org/ and http://www.statsilk.com/

15.6 Variance decomposition approach
To assess how much variance is explained by a model, simple OLS regression
entail the 𝑅2 statistic (proportion of explained variance). In MLM, there are
several several (co)variances.

Hox (2010, pp.70) proposes to examine residual error variance in a sequence
of models. This approach suggests examining the residual error variances in a
sequence of models:

• intercept-only model (since there are no explanatory variables in the
model, it is reasonable to interpret variances as the error variances)

• model including the level-1 predictors
• model including the level-2 predictors
• model with random coefficient
• model with cross-level interaction

Other useful references:

• Clarke, P., Crawford, C., Steele, F. & Vignoles, A. (2010). The choice
between fixed and random effects models: some considerations for edu-
cational research. Institute of Education DoQSS, Working Paper No. 10.
Available here.
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• Moehring, K. (2012). The fixed effect as an alternative to multilevel anal-
ysis for cross-national analyses. GK Soclife working paper. Available here

15.7 Centering and standardizing
The regression intercept equals the expected value of Y if all X are 0. However,
what if 0 has no useful meaning or is not possible? (e.g. age of 0). In this case,
it is useful to transform the X variables, for instance by centering them. There
are two options:

• Grand mean centering: computing variables as deviations from the overall
mean (the constant in model reflects the mean of all cases)

• Group mean centering: computing variables as deviation from the group
mean (decomposes within vs. between effects)

15.8 Concluding remarks
Ultimately the application of MLM with fixed or random effects is done to
capture more realism in the phenomenon we are seeking to describe with our
model. While all models are to some degree incorrect, inaccurate estimation
or pooling dissimilar information may extend the degree to which the model is
inaccurate or misleading.

15.9 How it works in R?
See the lecture slides on MLM:

You can also download the PDF of the slides here:

15.10 Time to practice on your own
In the following example, we would like to assess cross-national differences in
the gender gap in working time.

First thing you want is to download the data from the European Social Sur-
vey and select the variables: country information, working time, gender and
additional explanatory variables (e.g. level of education, having children, etc).
Then, you want to know how the variables are coded and to apply the necessary
changes. You can also filter outliers (e.g. very high working hours).
library(foreign)
db <- read.spss(file=paste0(getwd(),"/data/ESS10.sav"),

use.value.labels = T,
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to.data.frame = T)
sel <- db |>
dplyr::select(cntry,wkhct,gndr,eduyrs,chldhhe) |>
stats::na.omit()

# drop levels
sel$cntry <- droplevels(sel$cntry)
sel <- sel[complete.cases(sel),]
# recodings
sel$gndr <- ifelse(sel$gndr=="Female",1,0)
sel$wkhct <- as.numeric(sel$wkhct)
sel$eduyrs <- as.numeric(sel$eduyrs)
sel$cntry <- as.factor(sel$cntry)
# filtering
sel <- sel[sel$wkhct<60,]
hist(sel$wkhct)
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Second, you start by conducting a fixed effects model.
dummy_model <- lm(wkhct ~

gndr +
cntry,

data=sel)
summary(dummy_model)
##
## Call:
## lm(formula = wkhct ~ gndr + cntry, data = sel)
##
## Residuals:
## Min 1Q Median 3Q Max
## -40.958 -0.958 1.287 3.350 24.145
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 41.89245 0.22431 186.762 < 2e-16 ***
## gndr -2.31631 0.13146 -17.620 < 2e-16 ***
## cntrySwitzerland -3.28260 0.35072 -9.360 < 2e-16 ***
## cntryCzechia -0.56063 0.32625 -1.718 0.085746 .
## cntryEstonia -1.55739 0.34830 -4.471 7.83e-06 ***
## cntryFinland -4.52794 0.32602 -13.889 < 2e-16 ***
## cntryFrance -4.72122 0.33860 -13.943 < 2e-16 ***
## cntryGreece 1.15618 0.33480 3.453 0.000555 ***
## cntryCroatia 0.13675 0.37672 0.363 0.716614
## cntryHungary 0.49649 0.33865 1.466 0.142649
## cntryIceland -5.13347 0.45526 -11.276 < 2e-16 ***
## cntryItaly -2.60405 0.33088 -7.870 3.78e-15 ***
## cntryLithuania -0.99921 0.34479 -2.898 0.003761 **
## cntryMontenegro 0.06515 0.90505 0.072 0.942617
## cntryNorth Macedonia 0.25775 0.41787 0.617 0.537364
## cntryNetherlands -8.17255 0.36731 -22.250 < 2e-16 ***
## cntryNorway -6.24267 0.37639 -16.586 < 2e-16 ***
## cntryPortugal -1.20709 0.35048 -3.444 0.000575 ***
## cntrySlovenia -1.14729 0.39832 -2.880 0.003978 **
## cntrySlovakia -0.14967 0.37599 -0.398 0.690593
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.059 on 15183 degrees of freedom
## Multiple R-squared: 0.1014, Adjusted R-squared: 0.1002
## F-statistic: 90.14 on 19 and 15183 DF, p-value: < 2.2e-16
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Interpretation

From the output, we see that gender has a negative effect on working
hours (women work on average less hours than men). We also note some
country differences. The R-squared is 0.09, which means that the model
explains ~9% of the overall variance.

Third, you conduct a “null” model with only working hours. This allows you
to assess how much variation in working hours can be attributed to individual
differences and country differences.
empty_model <- lme4::lmer(wkhct ~ 1 + (1 | cntry),

data=sel)
stargazer::stargazer(empty_model, type="text", single.row = T)
##
## ===============================================
## Dependent variable:
## ---------------------------
## wkhct
## -----------------------------------------------
## Constant 38.691*** (0.599)
## -----------------------------------------------
## Observations 15,203
## Log Likelihood -53,490.590
## Akaike Inf. Crit. 106,987.200
## Bayesian Inf. Crit. 107,010.100
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
# ICC
performance::icc(empty_model)
## # Intraclass Correlation Coefficient
##
## Adjusted ICC: 0.092
## Unadjusted ICC: 0.092

Interpretation

The ICC can be interpreted as the proportion of the variance explained
by the grouping structure in the population. Here, the ICC tells us that
~8% of the variance can be attributed to country differences. The average
expected working hours for a person is ~39 hrs across all countries.

Fourth, you can conduct a random intercept model with gender, and compare it
with a random intercept with individual level variables (having children, years
of education, etc.).
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# gender only
random <- lme4::lmer(wkhct ~ gndr + (1 | cntry),

data=sel)
stargazer::stargazer(random, type="text", single.row = T)
##
## ===============================================
## Dependent variable:
## ---------------------------
## wkhct
## -----------------------------------------------
## gndr -2.315*** (0.131)
## Constant 39.874*** (0.606)
## -----------------------------------------------
## Observations 15,203
## Log Likelihood -53,338.130
## Akaike Inf. Crit. 106,684.300
## Bayesian Inf. Crit. 106,714.800
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
# add more variables
random2 <- lme4::lmer(wkhct ~ gndr + eduyrs + chldhhe + (1 | cntry),

data=sel)
stargazer::stargazer(random2, type="text", single.row = T)
##
## ===============================================
## Dependent variable:
## ---------------------------
## wkhct
## -----------------------------------------------
## gndr -2.382*** (0.132)
## eduyrs -0.061*** (0.018)
## chldhheNo -1.013*** (0.137)
## Constant 41.221*** (0.643)
## -----------------------------------------------
## Observations 15,203
## Log Likelihood -53,302.970
## Akaike Inf. Crit. 106,617.900
## Bayesian Inf. Crit. 106,663.700
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01

You can also assess the variance between countries:
as.data.frame(lme4::VarCorr(random))
## grp var1 var2 vcov sdcor
## 1 cntry (Intercept) <NA> 6.778696 2.603593
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## 2 Residual <NA> <NA> 64.944980 8.058845

Interpretation

The average working hours is ~40 hrs across all countries. It varies by a
score of ~7 between countries.

You can also test whether it makes sense to rely on a random intercept instead
of the fixed effects model.
anova(random, dummy_model)
## refitting model(s) with ML (instead of REML)
## Data: sel
## Models:
## random: wkhct ~ gndr + (1 | cntry)
## dummy_model: wkhct ~ gndr + cntry
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## random 4 106683 106713 -53337 106675
## dummy_model 21 106617 106777 -53287 106575 100.25 17 8e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Interpretation

The comparison of both models using the anova() function tells us that the
random intercept model is better than the fixed effects model to explain
working hours.

Fifth, we can conduct a random slope model with gender:
randomslope <- lme4::lmer(wkhct ~ 1 + gndr +

(1 + gndr| cntry),
data=sel)

stargazer::stargazer(randomslope, type="text", single.row = T)
##
## ===============================================
## Dependent variable:
## ---------------------------
## wkhct
## -----------------------------------------------
## gndr -2.317*** (0.467)
## Constant 39.849*** (0.443)
## -----------------------------------------------
## Observations 15,203
## Log Likelihood -53,256.100
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## Akaike Inf. Crit. 106,524.200
## Bayesian Inf. Crit. 106,570.000
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01

You can also assess the variance between countries:
as.data.frame(lme4::VarCorr(randomslope))
## grp var1 var2 vcov sdcor
## 1 cntry (Intercept) <NA> 3.532110 1.8793908
## 2 cntry gndr <NA> 3.748614 1.9361337
## 3 cntry (Intercept) gndr 2.320980 0.6378506
## 4 Residual <NA> <NA> 64.133868 8.0083624

Interpretation

Average working hours for a person is ~40 hrs across all countries (varies by
a score of ~3.5 between countries) Gender decreases the working hours on
average by ~2.3 (varies by a score of ~3.7 between countries). Furthermore,
the correlation between the intercept and slope is positive (~2.3).

You can also test whether it makes sense to rely on a random slope instead of
a fixed slope model.
# anova(randomslope, random)

Finally, you can add a cross-level interaction using the information provided by
the Gender equality Index.
sel$cntry = droplevels(sel$cntry)
sel$cntry = as.numeric(sel$cntry)
sel$GEI = NA
sel$GEI[sel$cntry==1] = 58.8
sel$GEI[sel$cntry==2] = NA
sel$GEI[sel$cntry==3] = 55.7
sel$GEI[sel$cntry==4] = 59.8
sel$GEI[sel$cntry==5] = 73.4
sel$GEI[sel$cntry==6] = 74.6
sel$GEI[sel$cntry==7] = 51.2
sel$GEI[sel$cntry==8] = NA
sel$GEI[sel$cntry==9] = 55.6
sel$GEI[sel$cntry==10] = NA
sel$GEI[sel$cntry==11] = 63
sel$GEI[sel$cntry==12] = 55.5
sel$GEI[sel$cntry==13] = NA
sel$GEI[sel$cntry==14] = NA
sel$GEI[sel$cntry==15] = 72.1
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sel$GEI[sel$cntry==16] = NA
sel$GEI[sel$cntry==17] = 59.9
sel$GEI[sel$cntry==18] = 68.3
sel$GEI[sel$cntry==19] = 54.1
# cross level interaction term
# random slope with cross-level interaction
randomslope2 <- lme4::lmer(wkhct ~ 1 + gndr + GEI +

gndr*GEI +
(1 + gndr| cntry),

data=sel)
stargazer::stargazer(randomslope2, type="text", single.row = T)
##
## ===============================================
## Dependent variable:
## ---------------------------
## wkhct
## -----------------------------------------------
## gndr 6.325** (3.095)
## GEI -0.208*** (0.035)
## gndr:GEI -0.135*** (0.050)
## Constant 52.664*** (2.164)
## -----------------------------------------------
## Observations 12,020
## Log Likelihood -41,711.130
## Akaike Inf. Crit. 83,438.260
## Bayesian Inf. Crit. 83,497.420
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01

Interpretation

The GEI has a negative impact on working hours. Furthermore, the cross-
level interaction of between GEI and gender has also a negative impact.
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Chapter 16

Exam preparation

16.1 Mock-exam
On this page, you will find a mock-exam:

Please find here the mock-exam:

Please also find here the solutions:

16.2 Additional examples of questions
Here are additional examples to train for the exam:

Please find additional questions here:

Please also find here the solutions:

According to the semester schedule, questions about the exam (as well as any
question related to the course content) will be discussed during the “Recap”
session on December 12th.
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16.3 SEB mock-exam
Please consider that on December 12th (from 7:00 to 22:00) you have the oppor-
tunity to take the mock-exam on site. To do so, open the SEB mock-exam link
and complete the mock-exam. The SEB mock-exam link will be published here
a few days before the mock-exam. It is recommended to take the mock-exam
in order to:

• do the short-term functional test
• test your access to the exam (whether the login works or the access to the

exam course is possible)
• check the examination environment (exam navigation, layout, etc.)

16.4 How to prepare for the exam?
The exam will focus on the content of the slides of each chapter. The examples
from the literature and the practical exercises will also help you to gain a better
understanding of how to apply the statistical methods.

The exam covers the material from the course on “Multivariate Statistics” and
lasts 50 minutes.

The exam consists of 7 sections:

• linear regression
• ANOVA and repeated measures ANOVA
• logistic regression
• moderation analysis and mediation analysis
• EFA and CFA
• SEM
• multilevel modelling

16.5 Question types
The exam entails three types of question:

• single choice questions: there are four answers to each question, one of
which is correct (max 1 point awarded, and should take between 1 and 2
minutes to answer)

• Kprim questions: there are four statements/answers for every Kprim ques-
tion and you must decide for each of these statements/answers whether it
is correct or false (4 right decisions per question will give you 2 points, 3
right answers will lead to 1 point, 2 or less right answers will give you 0
points (max 2 points awarded, and should take between 1.5 and 3 minutess
to answer)

• open-questions (between 1 and 3 points awarded, and should take twice
the time as the number of points to answer)
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16.6 What is not part of the exam
The following aspects will not be part of the exam:

• You will not write R code/syntax during the exam
• You will not be asked to interpret R code/syntax during the exam
• You will not write mathematical demonstrations during the exam
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Chapter 17

Longitudinal data analysis

17.1 Longitudial data analysis with panel data
A panel is usually denoted by having multiple entries (rows) for the same entity
(e.g. respondent, company, etc) in a dataset. The multiple entries are due to
different time periods at which the entity was observed.

17.2 The problem with OLS
OLS can be used to pool observations of the same entity recorded at different
time points. However, observations of the same entity are then treated as if
they originate from other entities. Important influences like serial correlation
of observations within the same entity cannot be considered, leading to biased
estimates.

For instance, we might be interested in knowing what factors affect people’s
change in their opinion about what is the most important problem facing the
country. The next figure displays the change in the proportion of citizens’ con-
cerns about the most important policy issues during the Swiss 2019 federal
election campaign.
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17.3 Fixed effect model
Fixed effect models (e.g., including time dummy variables) are sometimes ap-
plied to remove omitted variable bias. By estimating changes within a specific
group (over time) all time-invariant differences between entities are controlled
for.

The assumption behind the fixed effect model is that something influences the
independent variables and one needs to control for it. The model removes char-
acteristics that do not change over time, leading to unbiased estimates of the
remaining independent variables on the dependent variable. Hence, if unob-
served characteristics do not change over time, each change in the dependent
variable must be due to influences not related to the fixed effects, which are
controlled for.

Time-invariant variables

Note that the influence of time-invariant independent variables on the
dependent variable cannot be examined with a fixed effect model. In this
case, Generalized Estimating Equation (GEE) models are more suitable
for estimating a nonvarying (or average) coefficient in the presence of
clustering.
GEEs are based on the quasi-likelihood theory and no assumption is made
about the distribution of response observations (Liang and Zeger, 1986).
Furthermore, with GEEs, there is no need to make hypotheses on the
structure of residuals compared to other models. This makes it possible
to manage the panel data with a dichotomous dependent variable.
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17.4 Multilevel model
Random effect models (with random intercept and/or slope) assume that any
variation between entities is random and not correlated with the independent
variables used in the estimation model. This also means that time-invariant vari-
ables (like a person’s gender) can be taken into account as independent variables.
The entity’s error term (unobserved heterogeneity) is hence not correlated with
the independent variables.

A decision between a fixed and random effects model can be made with the
Hausman test assessing whether the individual error terms are correlated with
the independent variables. The null hypothesis states that there is no such
correlation (thus, one should go with a random effect model).The alternative
hypothesis is that a correlation exists (thus, one should opt for a fixed effect
model). The test is implemented in function phtest().

17.5 plm package
A useful ressource to conduct longitudinal data analysis is the plm R package.
For more information about the plm package, refer to the following article:

Croissant, Y., & Millo, G. (2008). Panel Data Econometrics in R: The plm
Package. Journal of Statistical Software, 27(2), 1-43. Available here

17.6 Analytical steps
As with MLM, we can start by conducting a fixed effect model by including
dummy variables (e.g. for years). Then, the function pFtest() tests for fixed
effects with the null hypothesis that pooled linear model is better than fixed
effects.

In contrast to the fixed effect model, the random effect model assumes that an
individual (entity) specific effect is not correlated with the independent variables.
A decision between a fixed and random effects model can be made with the
Hausman test. The null hypothesis states that there is no such correlation
(thus, one should prefer the random effect model). The alternative hypothesis
is that a correlation exists (thus, one should go for the fixed effect model).

The Breusch-Pagan Lagrange multiplier Test further helps to decide between a
random effects model and a simple linear regression. This test is implemented
in function plmtest() with the null hypothesis that the variance across entities
is zero (thus, this means that there is no panel effect).
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17.7 Heteroskedasticity and serial correlation
Testing for the presence of heteroskedasticity can be implemented in the function
bptest().

For long time-series, a test for serial correlation of the residuals should be per-
formed because serial correlation can lead to an underestimation of standard
errors (too small) and an overestimation of R2 (too large). The test is imple-
mented in function pbgtest() with the null hypothesis that there is no serial
correlation.

In order to solve the issue of serial correlation, clustered standard errors have to
be used. Clustered standard errors estimate the variance of the coefficient when
independent variables are correlated within the entity. Correcting the standard
errors can be done with the function vcovHC().

17.8 How it works in R?
See the lecture slides on longitudinal data analysis:
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Chapter 18

Latent Growth Modelling

18.1 Latent Growth Modelling (LGM)
LGM allows us to investigate longitudinal trends or group differences in measure-
ment (also called growth trajectories). For example, suppose we want to model
the political (or their political political engagement) polarization of panel par-
ticipants over time. The objective of this chapter is to understand the concept
of LGM and to be able to implement these models in lavaan.

18.2 Recap: lavaan syntax
Let’s first recall the typical lavaan syntax:

• ~ predict, used for regression of observed outcome to observed predictors
• =~ indicator, used for latent variable to observed indicator in factor anal-

ysis measurement models
• ~~ covariance
• ~1 intercept or mean (e.g., q01 ~ 1 estimates the mean of variable q01)
• 1* fixes parameter or loading to one
• NA* frees parameter or loading (useful to override default marker method)
• a* labels the parameter ‘a’, used for model constraints
• c(a,b)* specifically for multigroup models, see note below

18.3 Understanding the concept of LGM
LGM are thus a special class of CFA models used to model trajectories over
time. LGM models can be considered as an extension of the CFA model where
the intercepts are freely estimated. Most commonly:

• the loadings for the intercept factor are all fixed to 1

224



• the loadings for the linear slope factor can be any ordered progression
• the first loading of the slope factor is fixed to 0
• the progression proceeds ordinally in increments of 1
• a one-unit increase in time is interpreted as an increase in the predicted

outcome for a fixed time interval increase

Unlike traditional CFA models where the interpretation focuses on the loadings,
the loadings are fixed in GLM which implies that the focus is on the latent
intercept and linear slope factors.

For GLM, the dataset should be structured in wide format: each column repre-
sents the outcome (or dependent variable) at a specific time point. An assump-
tion is that each observation or row must be independent of another. However,
columns indicating outcomes are time dependent.

Here is a path diagram representing our particular LGM:

The equation for each time point defined for a person states as:

𝑥𝑖𝑡 = 𝜏𝑖 + 𝜉1 + (𝑡)𝜉2 + 𝛿𝑖𝑡

where the observed intercepts are constrained to be zero (𝜏𝑖 = 0). Furthermore,
the (symmetric) variance covariance matrix of the latent intercept and slope is
defined as:

Φ = [𝜙11
𝜙21 𝜙22

]

where 𝜙11 is the variance of the latent intercept, 𝜙22 is the variance of the latent
slope and 𝜙21 is the covariance of the intercept and slope. The population
parameters correspond to the latent intercept and linear slope means.
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18.4 Ordinal versus measured time in an LGM
The fixed loadings for the slope factor can be defined in different way depending
on how time is modeled. For instance, it can be assumed that time is measured
ordinally (in increments of year or semester), regardless of the actual measured
time (the loadings will be 0,1,2,3,…). In other situations, it may be more ben-
eficial to use measured time, such as for a study design where assessments are
implemented at baseline, 3-, 6-, 9-, and 12-month follow-up (the loadings will
be fixed at 0, 3, 6, 9 and 12), thus corresponding to the actual time of assess-
ment. The choice of using ordinal versus measured time impacts on the mean
of the intercept and slope and, therefore, the interpretation of these terms. A
recommendation is that, if time intervals are unequal, it may be better to use
measured time.

18.5 Quiz
True

False

Statement

In a latent growth model, the observed intercepts are constrained to be zero but
the latent intercepts are unconstrained to be free.

Suppose the mean of the slope is positive. A positive covariance between the
intercept and slope means that for lower values of the starting X, the weaker
the linear increase in X over time.

Suppose the last semester was four months long instead of three. If we continue
to use ordinal time (i.e., 0,1,2,3,4), the mean of the slope factor would still be
interpreted as the increase in X for every one semester increase in time.

Suppose the last semester was four months long instead of three. Using mea-
sured time would be more representative.

View Results

My results will appear here

18.6 Equivalence of the LGM to the hierarchical
linear model (HLM)

LGM can be re-specified as an equivalent hierarchical linear model (HLM). The
first modification is the format of the dataset: it should be in long format with
repeated observations of time spanning multiple rows of data for every subject.
For instance, HLM consists of repeated observations at Level 1 nested within
individuals (index for time points: 𝑖) at Level 2 (index for individuals: 𝑗).

226



This suggests that the LGM model is equivalent to a HLM model with time
nested within individuals with the following specifications:

• inclusion of a fixed effect of time at Level 1
• addition of a random intercept clustered by student and a random slope

of time (indicated as time|student with the lmer syntax)

𝑦𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗 ∗ 𝑇 𝐼𝑀𝐸𝑖𝑗 + 𝑟𝑖𝑗

𝛽0𝑗 = 𝛾00 + 𝑢0𝑗

𝛽1𝑗 = 𝛾10 + 𝑢1𝑗

The important difference between the default LGM and HLM is that the residual
variances of the LGM are unconstrained across timepoints but are constrained
to be the same across time in a HLM by default. In order to constrain the
residual variances in an LGM, we can use the a* notation in the lavaan syntax.
In that case, the interpretation of the output is exactly the same for the LGM
as it is for the HLM.

18.7 Adding a predictor to the LGM
Until now, the fundamental latent growth model was characterized an intercept
and linear growth factor, thus enabling us to answer the question of whether the
linear trajectory is increasing, decreasing or flat over time. Now, we would like
to find out what are potential predictors of this linear trajectory. For example,
if the trajectory of political involvement increases over time, how does political
affiliation predict this trend? Are there ideological differences in either the
starting political involvement (intercept factor) or the growth trajectory (slope
factor)? We thus would have the following specifications:

• latent factors now have a predictor
• latent intercept and slope factors become endogenous (y-side variables)
• there is a residual term which was not in the exogenous model (replace

the variance of factor with the residual factor term)
• additional of an exogenous predictor (x1)
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18.8 How it works in R?
See the lecture slides on LGM:
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TOOLKIT
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Chapter 19

Regression toolkit

19.1 ShinyApp to visualise (simple/multiple) re-
gressions

We can visualise the result of a (simple/multiple) regression modelling with a
ShinyApp that relies on a subset of the European Social Survey data and data
from the Gender Equality Index (the ShinyApp is also available here).

Note: the source code is inspired from E. Harrison’ shinyfit application which
can be found on GitHub.
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