Course: Multivariate statistics (AUT23)

Chapter 10: Structural equation modelling

11.16 Time to practice on your own

11.16.1 STM with multiple latent variables

We want to create a structural model that relates multiple latent variables using social science <u>data</u> describing the effect of student background on academic achievement.

We create a measurement model by defining each latent variable:

- Adjustment: measured by motivation, harmony, and stability.
- Risk: measured by verbal, negative parent psychology, and socioeconomic status.
- Achievement: measured by reading, arithmetic, and spelling.

We also define the regression path where achievement will be the combination of adjustment and risk.

> Show the code

Next, we fit the model to the data using sem() from lavaan. Followed by a summary, including model fit. How do you interpret these results?

Show the code

Note that further analysis using these data can be found in the <u>Introduction to structural equation</u> modeling (SEM) in R with <u>Lavaan</u> from the UCLA: Statistical Consulting Group.

11.16.2 SEM framework

Based on the following flowchart (original can be found here), state whether the following statements are true or false:

- SEM encompasses a broad range of linear models and combines simultaneous linear equations with latent variable modeling.
- Solution
- Multivariate regression means that there is always more than one exogenous predictor in my model.
- Solution
- Structural regression models the regression paths only among latent variables.
- Solution

Chapter 10: Structural equation modelling (answers)

11.16 Time to practice on your own

11.16.1 STM with multiple latent variables

We want to create a structural model that relates multiple latent variables using social science <u>data</u> describing the effect of student background on academic achievement.

We create a measurement model by defining each latent variable:

- Adjustment: measured by motivation, harmony, and stability.
- Risk: measured by verbal, negative parent psychology, and socioeconomic status.
- Achievement: measured by reading, arithmetic, and spelling.

We also define the regression path where achievement will be the combination of adjustment and risk.

Show the code

dat <- read.csv("https://stats.idre.ucla.edu/wp-content/uploads/2021/02/worland5.csv")

mod <- '
 # measurement model

adjust =~ motiv + harm + stabi

risk =~ verbal + ppsych + ses

achieve =~ read + arith + spell

regression

achieve ~ adjust + risk</pre>

Next, we fit the model to the data using sem() from lavaan. Followed by a summary, including model fit. How do you interpret these results?

```
Show the code
fit <- lavaan::sem(mod, data=dat)
summary(fit, fit.measures=TRUE)
## lavaan 0.6.15 ended normally after 130 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 21</pre>
```

```
##
## Number of observations
                                  500
## Model Test User Model:
## Test statistic
                148.982
## Degrees of freedom
                                 24
## P-value (Chi-square) 0.000
##
## Model Test Baseline Model:
##
## Test statistic
                         2597.972
## Degrees of freedom
                                 36
                        0.000
## P-value
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.951
## Tucker-Lewis Index (TLI) 0.927
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -15517.857
## Loglikelihood unrestricted model (H1) -15443.366
##
## Akaike (AIC) 31077.713
## Bayesian (BIC)
                           31166.220
## Sample-size adjusted Bayesian (SABIC) 31099.565
##
```

```
## Root Mean Square Error of Approximation:
##
## RMSEA
                            0.102
## 90 Percent confidence interval - lower 0.087
## 90 Percent confidence interval - upper 0.118
## P-value H_0: RMSEA <= 0.050 0.000
## P-value H_0: RMSEA >= 0.080 0.990
##
## Standardized Root Mean Square Residual:
##
## SRMR
                           0.041
##
## Parameter Estimates:
##
## Standard errors
                            Standard
## Information
                           Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
          Estimate Std.Err z-value P(>|z|)
## adjust =~
## motiv 1.000
## harm 0.884 0.041 21.774 0.000
## stabi 0.695 0.043 15.987 0.000
## risk =~
## verbal 1.000
## ppsych
             -0.770 0.075 -10.223 0.000
## ses
        0.807 0.076 10.607 0.000
## achieve =~
```

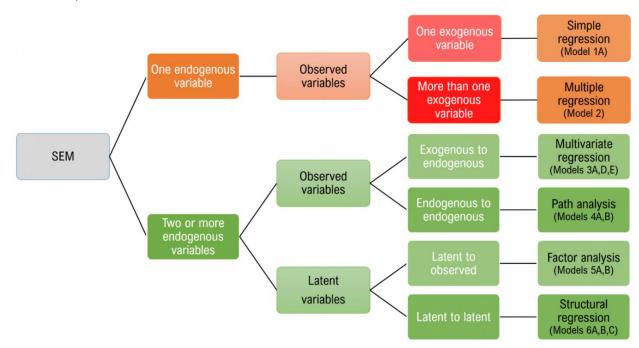
```
## read 1.000
## arith 0.837 0.034 24.437 0.000
## spell 0.976 0.028 34.338 0.000
##
## Regressions:
## Estimate Std.Err z-value P(>|z|)
## achieve ~
## adjust 0.375 0.046 8.085 0.000
## risk 0.724 0.078 9.253 0.000
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## adjust ~~
## risk 32.098 4.320 7.431 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .motiv 12.870 2.852 4.512 0.000
## .harm 31.805 2.973 10.698 0.000
## .stabi 57.836 3.990 14.494 0.000
## .verbal 46.239 4.788 9.658 0.000
## .ppsych 68.033 5.068 13.425 0.000
## .ses 64.916 4.975 13.048 0.000
## .read 11.372 1.608 7.074 0.000
## .arith 37.818 2.680 14.109 0.000
## .spell 15.560 1.699 9.160 0.000
## adjust
           86.930 6.830 12.727 0.000
## risk 53.561 6.757 7.927 0.000
## .achieve 30.685 3.449 8.896 0.000
```

Note that further analysis using these data can be found in the <u>Introduction to structural equation</u> modeling (SEM) in R with <u>Lavaan</u> from the UCLA: Statistical Consulting Group.

11.16.2 SEM framework

Based on the following flowchart (original can be found here), state whether the following statements are true or false:

- SEM encompasses a broad range of linear models and combines simultaneous linear equations with latent variable modeling.
- Solution


True: Multivariate regression and path analysis are simultaneous equations of observed variables; factor analysis is a latent variable model, and structural regression combines the concepts of path analysis with factor analysis.

- Multivariate regression means that there is always more than one exogenous predictor in my model.
- Solution

False: Multivariate regression indicates more than one endogenous variable. You can certainly have only one exogenous predictor of multiple endogenous variables.

- Structural regression models the regression paths only among latent variables.
- Solution

True: Structural regression defines relationships between latent variables and path analysis defines relationships between observed variables.

